
14 The Cumulative Distribution Function

Definition The cumulative distribution function of a random variable X is
the function FX : R → R defined by

FX(r) = P(X ≤ r)

for all r ∈ R.

Proposition 14.1 (Properties of the cumulative distribution function). Let
X be a random variable. Then

(a) 0 ≤ FX(r) ≤ 1 for all r ∈ R.

(b) For all a, b ∈ R with a ≤ b, we have P(a < X ≤ b) = FX(b) − FX(a).
In particular FX(a) ≤ FX(b) so FX is an increasing function.

(c) limr→−∞ FX(r) = 0 and limr→∞ FX(r) = 1.

Proof The proof follows easily from the definition of FX . •

Remark Suppose X is a discrete random variable. If we know one of the
probability mass function and cumulative distribution function of X then we
can determine the other. For example, if the range of X is {0, 1, 2, . . .}, then,
for all r ∈ R,

FX(r) =
∑
0≤i≤r

P(X = i)

and, for all k ∈ {0, 1, 2, ...},

P(X = k) = P(X ≤ k)− P(X ≤ k − 1) = FX(k)− FX(k − 1).

15 Continuous Random Variables

Definition A random variable X is continuous if its cumulative distribution
function FX is a continuous function.

If X is a continuous random variable then we must have P(X = r) = 0 for all
r ∈ R. This implies that the probability mass function gives no information
on the distribution of X. It also implies that P(X < r) = P(X ≤ r).

Definition Let X be a continuous random variable. Then:
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• a median of X is a number r such that FX(r) = 1/2;

• a lower quartile of X is a number r such that FX(r) = 1/4;

• an upper quartile of X is a number r such that FX(u) = 3/4;

• for any number k with 0 ≤ k ≤ 100, a kth percentile of X is a number
r such that FX(r) = k/100.

Remark The above definition also holds for discrete random variables. How-
ever, for a discrete random variable the median (and the quartiles and per-
centiles) may not exist. If the random variable is continuous they are guar-
anteed to exist. (Which result from calculus implies this?)

Definition The probability density function of a continuous random variable
X is the function fX we obtain by differentiating the cumulative distribution
function FX . So

fX(r) =
d

dr
FX(r).

Note fX is not defined at points where FX is not differentiable. We can
either leave it undefined at these points or give it any reasonable values. It is
a fact (from calculus) that the cumulative distribution function of a contin-
uous random variable is differentiable except possibly at a few “corners”, so
whatever we do will make no difference to integrals involving fX . Everything
that follows will be unaffected by the value of fX at these “bad” points.

Proposition 15.1 (Properties of the probability density function). Let X
be a continuous random variable. Then:

(a) fX(r) ≥ 0 for all r ∈ R.

(b) FX(r) =
∫ r

−∞ fX(t)dt for all r ∈ R.

(c) P(a < X ≤ b) = FX(b) − FX(a) =
∫ b

a
fX(r)dr for all a, b ∈ R with

a ≤ b.

(d)
∫∞
−∞ fX(r)dr = 1.

Proof (a) Proposition 14.1(b) tells us that FX is an increasing function,
hence its derivative is non-negative.
(b) Follows from the Fundamental Theorem of Calculus.
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(c) Follows from (b).
(d) Follows from (c). •

The probability density function plays a similar role in the theory of con-
tinuous random variables as the probability mass function in the theory of
discrete random variables. In particular we can use it to define the expecta-
tion and variance of a continuous random variable.

Definition Suppose X is a continuous random variable with probability
density function fX . Then

E(X) =

∫ ∞

−∞
rfX(r)dr

and, if E(X) = µ,

Var(X) =

∫ ∞

−∞
(r − µ)2fX(r)dr.

The properties of expectation and variance that we proved in the discrete
case (Propositions 11.2 and 11.3) also hold for continuous random variables.
We also have the result that, if X is a continuous random variable and
g : R → R is a continuous function, then g(X) is also a continuous random
variable and

E(g(X)) =

∫ ∞

−∞
g(r)fX(r)dr.

In particular we may use a similar proof to to that of Propositions 11.4
to show that

Var(X) = E(X2)− E(X)2.

Note In the above definitions the integrals go from −∞ to ∞. However, in
practice the probability density function is often 0 outside a smaller range
and so we can integrate over this smaller range only (see examples in notes
and on problem sheets).
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