13 Joint Distributions of Discrete Random
Variables

Sometimes it is useful to consider more than one random variable at the
same time, or to write a random variable as a combination of other random
variables. In this section we develop some of this theory in the discrete case.

Definition Suppose we have two discrete random variables X and Y defined
on the same sample space. Then the function

(xvy)'_)P(X:'%'aYZy)

from the Cartesian product Range(X) x Range(Y') to R is called the joint
probability mass function of X and Y, or more simple the joint distribution
of X and Y. (We use P(X = z,Y = y) to denote the probability of the event
that X =z and Y =y.)

When Range(X) and Range(Y') are small we can present the joint dis-
tribution of X and Y as a table. The example we had in lectures gave the
following:

R
0 1 2 3

0/ 0 3/35 6/35 1/35

B 1|2/35 12/35 6/35 0

212/35 3/35 0 0

Here, for example, the top right entry means that P(R =3, B = 0) = 1/35.

Proposition 13.1 (Properties of a joint distribution). Suppose X and Y are
discrete random variables. Then:

(a’) erRange(X) ZyERange(Y) P(X =, Y = y) = L
(b) For all x € Range(X), P(X =2) = > ey P(X =2,Y =y).

(¢) For ally € Range(Y), P(Y =y) = > cpungecx) P(X =2, Y =y).



Proof Part (a) follows from Kolmogorov’s second and third axioms using
the fact that the ranges of X and Y are either finite or countably infinite.
Parts (b) and (c) follow similarly just using the third axiom. o

Proposition 13.1(a) is useful for checking that we have calculated the joint
distribution correctly. Proposition 13.1(b) and (c) tell us how to calculate
the probability mass functions of X and Y from their joint distribution. (We
sometimes refer to the pmf’s of X and Y as the marginal distributions of the
joint distributions.)

Suppose X, Y are discrete random variables and g : R x R — R is a real-
valued function of two variables. Then ¢g(X,Y) is another random variable.
Its expectation is given by

E(g(X, V)= > > g(x,y)IP’(X =z,Y =y).

z€Range(X) yeRange(Y
Proposition 13.2. Suppose X and Y are discrete random variables. Then
EX+Y)=EX)+ EY).

Proof Lets use >, and >°  as shorthand for 37  p.. vy and 3° c popoeiyy:
respectively. Then we have

E(X+Y) = ZZ(I+y)IP>(X:x,Y:y)
= szp —i—ZZyP —y)
— Z ZIP’ +Z ZP =)
_ Za@ =1z)+» yPY

xT

= E(X)+ E(Y).
where:

e the third equality follows by taking the constant term z out of the
second summation in the first double sum, reversing the order of sum-
mation in the second double sum and then taking out the constant
term y in the second summation of this new double sum,;
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e the fourth equality uses Proposition 13.1.

More generally we have

Corollary 13.3. Suppose X1, Xs, ..., X, are discrete random variables and
C1,Ca,...,C, € R are constants. Then

E(Cle + 62X2 + ...+ Can) B ClE(Xl) + CQE(XQ) + ...+ CnE(Xn)
Proof This follows from Propositions 11.2(a) and 13.2 using induction on n,
see Exercise Sheet 9. °
Definition Two discrete random variables X and Y are independent if for
all x and y we have

PX =z2Y =y) =P(X =2)P(Y =y).

It is worth noting (because it is a frequent misconception) that we do
not require the random variables to be independent in Proposition 13.2 and
Corollary 13.3 However, if they are independent then we can say more.

Proposition 13.4. Suppose X andY are independent discrete random vari-
ables. Then:

(o) E(XY) = E(X)E(Y),
(b) Var(X +Y) = Var(X) + Var(Y).

Proof (a) Lets use 3, and ), asshorthand for 37, p,.0.x) a0d 3 c pange(vy
respectively. Then we have

B(XY) = Y Y syP(X =z,Y =y)

= Z Z zyP(X = z2)P(Y =vy)
= Y aP(X =x)) yP(Y =y)

= [Z tP(X = g;)] X [Z yP(Y =)
= E(X)E(Y). '



where:
e the second equality uses the hypothesis that X and Y are independent;

e the third equality takes the constant term zP(X = x) out of the second
summation in the double summation.

(b) Several applications of Propositions 13.2 give

Var(X +Y) = E(X+Y)}) -E(X +Y)?
= B(X?+2XY +Y?) — [E(X)+E(Y))?
= [E(X?) +2E(XY) +E(Y?)] - [E(X)? +2E(X)E(Y) + E(Y)?]
= [E(X?) - E(X)*] + [E(Y?) - E(Y)*] + 2[E(XY) — E(X)E(Y))]
= Var(X)+ Var(Y) +0

where:
e the second and third equalities use Proposition 13.2;

e the last equality uses part (a).

We next extend the definition of independence to an arbitrary number
random variables.

Definition Discrete random variables X1, X», ..., X,, are independent if when-
ever x; € Range(X;) for all 1 < i < n, we have

]P)(Xl = Jfl,XQ = To,... ,Xn = ZEn) = P(Xl = ZEl)P(XQ = l’g) . P(Xn = .Z‘n>

Corollary 13.5. Suppose X1, Xs,...,X,, are independent discrete random
variables and ci,co, .. .,c, € R are constants. Then

Var (1 X1 + coXo + ... + ¢, X,,) = A Var(X,) + 3 Var(Xy) + ... + 2 Var(X,,)

Proof This follows from Propositions 11.3(b) and 13.4 using induction on n,
see Exercise Sheet 9. o



The converses of Proposition 13.4 and Corollary 13.5 are false. For ex-
ample, it is possible to have E(XY) = E(X)E(Y) even when X and Y are
not independent.

Application Corollaries 13.3 and 13.5 give us an alternative way to calculate
the expectation and variance of a binomial random variable. Suppose X ~
Bin(n,p). Then X is the number of successes in n independent Bernoulli(p)
trials. For every 1 < i < n we define a random variable

Y, — 1 if the ith trial results in success
“ 1 0 if the ¢th trial results in failure

Then X = X; + Xy + -+ + X,,. Also, for every i we have X; ~ Bernoulli(p)
and so E(X;) = E(Xy) = -+ = E(X,,) = p. Corollary 13.3 now tells us that

Furthermore, since the X; are independent random variables and Var(X;) =
Var(Xy) = --- = Var(X,,) = p(1 — p), Corollary 13.5 implies that

Var(X) = Var(X;) + Var(Xs) + - - - + Var(X,,) = np(1 — p).

The random variables X; in this application are sometimes called indicator
variables.

Definition Suppose X and Y are discrete random variables with E(X) = ux
and E(Y) = py. Then the covariance of X and Y is

Cov(X,Y) = B ([X — pux][Y — py]) ZZ:K px)(y—py )P(X = 2,Y =y).

The correlation coefficient of X and Y is
Cov(X,Y)

corr(X,Y
( )= /Var(X)Var(Y)

Cov(X,Y) and corr(X,Y) measure how far X and Y are from being
independent. For example, if Cov(X,Y’) > 0 then

P(X > ux |Y > py) > P(X > px),
and if Cov(X,Y’) < 0 then
PX 2 pux |Y 2 py) < P(X 2 px).



Proposition 13.6. Suppose X and Y are discrete random variables. Then
(a) Cov(X,Y) = E(XY)—- EX)EY).
(b) If X and Y are independent then Cov(X,Y) = 0.

Proof (a) Let E(X) = px, E(Y) = py, and lets use }  and 3 as shorthand
for 3 e Range(x) A0 D ¢ Range(v) Tespectively. Then we have

Cov(X,Y) = D ) [ —pxlly— py]P(X = 2,Y =y)
= D oy — wpy — pxy + pxpy|P(X = 2,Y =)
= YN ayP(X =Y uyz ZP =y) -
uiiyZP(sz, +uxuyZZIP’ =)
- E(Xif)—zyzxw:x —uXZyIP
uxuyZZE:(X—x,Y—y) y

= E(XY) — pypux — pxpy + pxpy
= E(XY) — puxpy

where the fourth and fifth equalities use Proposition 13.1.
(b) This follows immediately from part (a) using Proposition 13.4(a). o

Proposition 13.7. Suppose X and Y are discrete random variables.
(a) Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y).
(b) If a,b,c,d € R are constants then
Cov(aX +b,cY +d) = acCov(X,Y),
and

corr(X,Y) ifac>0

corr(aX +b,cY +d) = { —con(X.Y) ifac<0



(¢) =1 < corr(X,Y) < 1.

Proof (a) We may use the proof technique of Proposition 13.4(b) to deduce

that

Var(X +Y)

(b) We have

E([X +Y]?) —E(X +Y)?
[E(X?) — E(X)*] + [E(Y?) — E(Y)?] + 2[E(XY) — E(X)E(Y))]
Var(X) + Var(Y) + 2Cov(X,Y)

Cov(aX +b,cY +d) = E([aX +0b][cY +d]) — E(aX + b)E(cY +d)

where:

= E(acXY + adX + bcY + bd) — [aE(X) + b][cE(Y) + d]
= [acE(XY) + adE(X) + bcE(Y) + bd] —

[acE(X)E(Y) 4+ adE(X) + bcE(Y') + bd]

ac[E(XY) — E(X)E(Y)]

acCov(X,Y)

e the first and fifth equalities use Proposition 13.6(a);

e the second and third equalities use Proposition 13.2.

We next prove the second part of (b). We have Var(aX +b) = a*Var(X)
and Var(cY + d) = ¢*Var(Y') by Proposition 11.3(b). Thus

corr(aX +b,cY +d)

Thus

corr(aX 4+ b,cY +d) =

B Cov(aX +b,cY +d)
N v/ Var(aX + b)Var(cY + d)
B acCov(X,Y)
N V/a?c?Var(X)Var(Y)
a

= —Ccorr(X, Y)
c

|ac]

corr(X,Y) ifac>0
—corr(X,Y) ifac<0

(c) (proof not examinable). We will need the following elementary result
about quadratic polynomials.



Claim. Suppose p,q,7 € R. If pz> +2qz+1r > 0 for all z € R then ¢* < pr.

Proof We can solve the equation pz% + gz +r = 0 to obtain z = (—q +
V@2 — pr)/p. Hence, if ¢*> > pr, then pz? + 2¢z + r has two real roots. This
would imply that pz? 4+ 2gz +r < 0 for some z € R and contradict the
hypothesis of the claim. Thus we must have ¢* < pr. °

We can now prove (c). Choose z € R. Parts (a) and (b) imply that

Var(zX +Y) = Var(zX)+ Var(Y) + 2Cov(zX,Y)
z*Var(X) + Var(Y) + 2zCov(X,Y).

Since variance cannot be negative we have
2*Var(X) + Var(Y) 4+ 2zCov(X,Y) > 0

for all z € R. We can now apply the Claim with p = Var(X), ¢ = Cov(X,Y)
and r = Var(Y). This gives Cov(X,Y)? < Var(X)Var(Y) and hence
Cov(X,Y)? -1
Var(X)Var(Y) =

Taking square roots we obtain —1 < corr(X,Y) < 1. .

Remark The point of proposition 13.7(b) is that if we decide to scale both
of the random variables by linear transformations (i.e. maps of the form
X — aX +band Y — ¢Y + d) then the covariance may change but the
correlation coefficient will not (as long as ac > 0).

Remark Suppose X is a discrete random variable and g : R — R. We have
seen that Z = ¢g(X) is another discrete random variable and often used the
fact that

r€Range(X)

Several students have asked why this expression for E(Z) is valid. Here is a
justification.

We have Range(Z) = {g(r) : r € Range(X)} and, for each t € Range(Z),
P(Z=t)= Y PX=r)

re€Range(X)
g(r)=t
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E(Z)= > tP(Z=t)= Y t Y P > gnPX

teRange(Z) teRange(Z) TER(MSgei(EX) ré€Range(X)
g\r)=

A similar argument shows that if X and Y are discrete random variables and
g:R* - R then Z = g(X,Y) is a new discrete random variable with

E(Z)=E@gX, V)= Y, > gl yP(X =2,V =y)

x€Range(X) yeRange(Y)



