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Question 1 [12]

Let A andB be events withP(A) = 5/6, P(B) = 7/12 andP(A∩B) = 1/2.

(a) Calculate the following:

(i) P(A∪B),

(ii) P(Ac),

(iii) P(A|B).

(b) Write down the following events in symbols:

(i) B does not occur,

(ii) B occurs but A does not,

(iii) exactly one of A and B occurs.

Question 2 [10]

(a) What does it mean for the two eventsE andF to be independent?

(b) A standard 6-sided fair die is rolled. Are the events “the number showing is even” and
“the number showing is a multiple of 3” independent? Justify your answer.

(c) Prove that ifE andF are independent events thenEc andF are independent events.

(d) What does the result you proved in part (c) imply about the situation in part (b)?

Question 3 [10]

(a) State the theorem of total probability.

I have 3 bags each containing coloured balls. The first bag contains 2 red balls; the
second bag contains 2 red balls and 2 blue balls; the third bag contains 2 red balls and 4 blue
balls. I pick a bag at random with all choices being equally likely and then I pick a ball from
that bag, again with all choices equally likely.

(b) What is the probability that I pick a red ball?

(c) How many red balls would have to be added to the third bag to ensure that the proba-
bility of picking a red ball using this procedure is at least 2/3?
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Question 4 [8]

Let C be a continuous random variable.

(a) Say how to find the cumulative distribution function (cdf) ofC if you are given its
probability density function (pdf).

Suppose that the pdf ofC is

fC(x) =


0 if x≤ 1
1 if 1 < x < 2
0 if 2≤ x

(b) Find the cdf ofC.

(c) What name is given to the distribution ofC?

Question 5 [12]

Let X be a discrete random variable.

(a) Define the expectation and variance ofX.

Let a,b∈ R and define the random variableY by Y = aX+b.

(b) Prove thatE(Y) = aE(X)+b.

(c) State and prove an analogous result for Var(Y).

(d) Show that if Var(X) 6= 0 thena andb may be chosen so thatE(Y) = 0 and Var(Y) = 1.

Question 6 [8]

Let R∼ Poisson(λ).

(a) FindP(R= 0).

(b) FindP(R≤ 1).

(c) FindP(R= 0|R≤ 1).

(d) What is the conditional probability mass function ofRgiven thatR≤ 1?
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Question 7 [20]

(a) What is meant by a Bernoulli(p) trial?

(b) Explain how the geometric distribution arises from a sequence of Bernoulli trials.

(c) Use the description of the geometric distribution you gave in part (b) to derive the
probability mass function of a Geometric(p) random variable.

For the remainder of the question letX be a random variable withX ∼Geometric(1/3).

(d) Calculate the probability thatX < 4.

(e) Calculate the probability thatX > E(X).

(f) Calculate the probability thatX is odd.

(g) For whichn is P(X = n) largest?

Question 8 [20]

(a) Explain briefly what is meant by a sample space and an event.

A number is chosen from the set{1,2,3,4} at random; then a second number is chosen at
random from the remaining numbers in the set. For both choices all possibilities are equally
likely.

(b) Write down the sample space for this experiment.

(c) Give an example of an event of cardinality 3 related to this experiment. Describe your
event in words and as a set.

Let A be the first number chosen,B be the second number chosen,T be the sum of the
two numbers which are not chosen, andP be the product of the two numbers which are not
chosen.

(d) Find the probability mass functions ofA andB.

(e) Find the expectations ofA andB.

(f) ExpressT in terms ofA andB and hence find the expectation ofT.

(g) Why is it not possible to use the method of part (f) to find the expectation ofP?

End of Paper
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