MTH4107 Introduction to Probability - 2010/11

Solutions to Exercise Sheet 9

Q1. (a) Each of A and B is a random variable taking values in $\{0,1,2\}$. To find the joint distribution we need to find the probability

$$
\mathbb{P}(A=i \text { and } B=j)
$$

for each pair $i, j \in\{0,1,2\}$.
$\mathbb{P}(A=1, B=0)=\mathbb{P}(\{(1,3),(1,4),(1,5),(1,6),(3,1),(4,1),(5,1),(6,1)\})=8 / 36=2 / 9$,
where, as usual we are expressing the outcome "1st die shows $i, 2$ nd die shows j " by (i, j).)
Working this out similarly for all pairs we get the joint distribution:

		A		
		0	1	2
	0	$4 / 9$	$2 / 9$	$1 / 36$
B	1	$2 / 9$	$1 / 18$	0
	2	$1 / 36$	0	0

(b) A and B are not independent since, for example,

$$
\mathbb{P}(A=2, B=2)=0 \neq \frac{1}{36} \times \frac{1}{36}=\mathbb{P}(A=2) \mathbb{P}(B=2)
$$

(c) To find the covariance it is probably simplest to use the formula from Proposition 13.6(a) in the notes. That is

$$
\operatorname{Cov}(A, B)=\mathbb{E}(A B)-\mathbb{E}(A) \mathbb{E}(B)
$$

The only outcome with positive probability for which $A B$ is non-zero is $A=1, B=1$; this outcome has probability $1 / 18$ and so $\mathbb{E}(A B)=1 \times 1 \times 1 / 18=1 / 18$. You can work out $\mathbb{E}(A)$ by finding the probability mass function of A (given by the column sums in the above table).

$$
\begin{array}{r|ccc}
x & 0 & 1 & 2 \\
\hline P(A=x) & 25 / 36 & 5 / 18 & 1 / 36
\end{array}
$$

and so $\mathbb{E}(A)=1 \times 5 / 18+2 \times 1 / 36=1 / 3$. Similarly $\mathbb{E}(B)=1 / 3$. It follows that,

$$
\operatorname{Cov}(A, B)=1 / 18-1 / 3 \times 1 / 3=-1 / 18
$$

The correlation coefficient is defined to be

$$
\frac{\operatorname{Cov}(A, B)}{\sqrt{\operatorname{Var}(A) \operatorname{Var}(B)}} .
$$

In our case, we can find $\operatorname{Var}(A)=5 / 18, \operatorname{Var}(B)=5 / 18$ (using the marginal distributions) and so

$$
\operatorname{corr}(A, B)=\frac{-1 / 18}{\sqrt{5 / 18 \times 5 / 18}}=-1 / 5
$$

Q2. Firstly, you can work out the expectation and variance of each of X, Y and Z (this is an exercise in what you remember about distributions).

$$
\begin{aligned}
& \mathbb{E}(X)=7 / 6 \quad \operatorname{Var}(X)=35 / 36 \\
& \mathbb{E}(Y)=2 \quad \operatorname{Var}(Y)=2 \\
& \mathbb{E}(Z)=6 \quad \operatorname{Var}(Z)=6
\end{aligned}
$$

(i) $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)=7 / 6+2=19 / 6$.
(ii) $\mathbb{E}(X+Z)=\mathbb{E}(X)+\mathbb{E}(Z)=7 / 6+6=43 / 6$ (It doesn't matter that X and Z are not independent the expectation of their sum is still the sum of their expectations).
(iii) $\mathbb{E}(X+2 Y+3 Z)=\mathbb{E}(X)+2 \mathbb{E}(Y)+3 \mathbb{E}(Z)=7 / 6+4+18=139 / 6$ (Again it doesn't matter that we don't have independence.......)
(iv) ... but here we do need independence). Because X and Y are independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=35 / 36+2=107 / 36$.
(v) $\operatorname{Var}(X+Z)$ cannot be determined.
(vi) $\operatorname{Var}(X+2 Y+3 Z)$ cannot be determined.

Q3 (a) We use induction on n.
Base Case Suppose $n=2$. We have

$$
\mathbb{E}\left(c_{1} X_{1}+c_{2} X_{2}\right)=\mathbb{E}\left(c_{1} X_{1}\right)+\mathbb{E}\left(c_{2} X_{2}\right)=c_{1} \mathbb{E}\left(X_{1}\right)+c_{2} \mathbb{E}\left(X_{2}\right)
$$

by Propositions 13.2 and 11.2(a).
Induction Hypothesis Suppose that $n \geq 3$ and that, for all integers m with $2 \leq$ $m<n$, we have

$$
\mathbb{E}\left(c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{m} X_{m}\right)=c_{1} \mathbb{E}\left(X_{1}\right)+c_{2} \mathbb{E}\left(X_{2}\right)+\ldots+c_{m} \mathbb{E}\left(X_{m}\right)
$$

Inductive Step Let $X=c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n-1} X_{n-1}$. Then

$$
\mathbb{E}\left(X+c_{n} X_{n}\right)=\mathbb{E}(X)+c_{n} \mathbb{E}\left(X_{n}\right)
$$

by the base case. We also have

$$
\mathbb{E}(X)=c_{1} \mathbb{E}\left(X_{1}\right)+c_{2} \mathbb{E}\left(X_{2}\right)+\ldots+c_{n-1} \mathbb{E}\left(X_{n-1}\right)
$$

by the induction hypothesis (with $m=n-1$). Thus

$$
\mathbb{E}\left(c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}\right)=c_{1} \mathbb{E}\left(X_{1}\right)+c_{2} \mathbb{E}\left(X_{2}\right)+\ldots+c_{n} \mathbb{E}\left(X_{n}\right)
$$

and the statement is also true for n random variables.
(b) We use induction on n.

Base Case Suppose $n=2$. We have

$$
\operatorname{Var}\left(c_{1} X_{1}+c_{2} X_{2}\right)=\operatorname{Var}\left(c_{1} X_{1}\right)+\operatorname{Var}\left(c_{2} X_{2}\right)=c_{1}^{2} \operatorname{Var}\left(X_{1}\right)+c_{2}^{2} \operatorname{Var}\left(X_{2}\right)
$$

by Propositions 13.4 and 11.3(b).
Induction Hypothesis Suppose that $n \geq 3$ and that, for all integers m with $2 \leq$ $m<n$, we have

$$
\operatorname{Var}\left(c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{m} X_{m}\right)=c_{1}^{2} \operatorname{Var}\left(X_{1}\right)+c_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+c_{m}^{2} \operatorname{Var}\left(X_{m}\right)
$$

Inductive Step Let $X=c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n-1} X_{n-1}$. Then X and X_{n} are independent and

$$
\operatorname{Var}\left(X+c_{n} X_{n}\right)=\operatorname{Var}(X)+c_{n}^{2} \operatorname{Var} \mathbb{E}\left(X_{n}\right)
$$

by the base case. We also have

$$
\operatorname{Var}(X)=c_{1}^{2} \operatorname{Var}\left(X_{1}\right)+c_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+c_{n-1}^{2} \operatorname{Var}\left(X_{n-1}\right)
$$

by the induction hypothesis (with $m=n-1$). Thus

$$
\operatorname{Var}\left(c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}\right)=c_{1}^{2} \operatorname{Var}\left(X_{1}\right)+c_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+c_{n}^{2} \operatorname{Var}\left(X_{n}\right)
$$

and the statement is also true for n independent random variables.
Please let me know if you have any comments or corrections

