MTH4107 Introduction to Probability - 2010/11

Solutions to Exercise Sheet 7

Q1.
(a) (i) $\mathbb{P}(X=2)=1 / 20$ (just read it off the table)
(ii) $\mathbb{P}(X=3)=0$ (since 3 is not a value that X takes)
(iii) $\mathbb{P}(X \leq 1)=\mathbb{P}(X=-2)+\mathbb{P}(X=-1)+\mathbb{P}(X=0)+\mathbb{P}(X=1)=19 / 20$
(iv) $\mathbb{P}(X<1)=\mathbb{P}(X=-2)+\mathbb{P}(X=-1)+\mathbb{P}(X=0)=3 / 4$
(v) $\mathbb{P}\left(X^{2}<1\right)=\mathbb{P}(X=0)=1 / 4$
(b)

$$
\mathrm{E}(X)=(-2) \times(1 / 10)+(-1) \times(2 / 5)+(0) \times(1 / 4)+(1) \times(1 / 5)+(2) \times(1 / 20)=-3 / 10
$$

We have $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$. Since
$\mathrm{E}\left(X^{2}\right)=(4) \times(1 / 10)+(1) \times(2 / 5)+(0) \times(1 / 4)+(1) \times(1 / 5)+(4) \times(1 / 20)=6 / 5$
this gives $\operatorname{Var}(X)=6 / 5-(-3 / 10)^{2}=6 / 5-(9 / 100)=111 / 100$.
(c) We have $-2^{2}+4=8,-1^{2}+4=5,0^{2}+4=4,1^{2}+4=5$ and $2^{2}+4=8$. Hence Range $(Y)=\{4,5,8\}$.
The probability mass function of Y is given by

$$
\begin{aligned}
& \mathbb{P}(Y=4)=\mathbb{P}(X=0)=1 / 4 \\
& \mathbb{P}(Y=5)=\mathbb{P}(X=-1)+\mathbb{P}(X=1)=3 / 5 \\
& \mathbb{P}(Y=8)=\mathbb{P}(X=-2)+\mathbb{P}(X=2)=3 / 20 .
\end{aligned}
$$

You could equally well express this as a table with 3 columns.
Q2. (a) Let $\mathbb{P}(Z=0)=\mathbb{P}(Z=3)=a, \mathbb{P}(Z=1)=\mathbb{P}(Z=2)=b$. Then $2 a+2 b=1$ so $a+b=1 / 2$. We have

$$
\mathrm{E}(Z)=0 a+b+2 b+3 a=3 a+3 b=3(a+b)=3 / 2 .
$$

Alternatively, Proposition 11.2(c) tells us that if a random variable is symmetrically distributed about a real number b then its expectation is b. In this case Z is symmetrically distributed about $3 / 2$ so $\mathrm{E}(Z)=3 / 2$.
(b)
$\operatorname{Var}(Z)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}=(0 \times a+1 \times b+4 \times b+9 \times a)-9 / 4=9 a+5 b-9 / 4$.

Since a and b are both probabilities we have $a, b \geq 0$ and $2 a+2 b=1$. It is not difficult to see that the smallest $9 a+5 b-9 / 4$ can be is when $a=0$ and $b=1 / 2$. Then Z has probability mass function $\mathbb{P}(Z=0)=\mathbb{P}(Z=3)=0, \mathbb{P}(Z=1)=\mathbb{P}(Z=2)=1 / 2$.
Similarly, for the largest variance, we take $a=1 / 2$ and $b=0$. Then Z has probability mass function $\mathbb{P}(Z=0)=\mathbb{P}(Z=3)=1 / 2, \mathbb{P}(Z=1)=\mathbb{P}(Z=2)=0$.
Note that these agree with the idea that smallest variance means most sharply concentrated while largest variance means most spread out.
(c) We have from part (b) that $\operatorname{Var}(Z)=9 a+5 b-9 / 4$. Since $\operatorname{Var}(Z)=1$, this gives $9 a+5 b=13 / 4$. We also have $a+b=1 / 2$. We may solve these simultaneous equations for a and b to deduce that $a=3 / 16$ and $b=5 / 16$ giving probability mass function

$$
\begin{array}{r|cccc}
n & 0 & 1 & 2 & 3 \\
\hline P(Z=n) & 3 / 16 & 5 / 16 & 5 / 16 & 3 / 16
\end{array}
$$

Q3* (a)
(i) The number of blue marbles I select can be 0,1 or 2 . Thus

$$
\text { Range }(B)=\{0,1,2\} .
$$

Let $X=\left\{b_{1}, b_{2}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}$ and let S be the set of all unordered selections of five distinct elements from X. Then $|S|=\binom{8}{5}$. The event that we choose no blues marbles has cardinality $\binom{6}{5}$. Hence $\mathbb{P}(B=0)=\binom{6}{5} /\binom{8}{5}$. Similarly $\mathbb{P}(B=1)=$ $\binom{6}{4} \times\binom{ 2}{1} /\binom{8}{5}$, and $\mathbb{P}(B=2)=\binom{6}{3} /\binom{8}{5}$. This gives the following probability mass function for B.

$$
\begin{array}{r|ccc}
n & 0 & 1 & 2 \\
\hline P(B=n) & 6 / 56 & 30 / 56 & 20 / 56
\end{array}
$$

Hence

$$
\mathrm{E}(B)=0 \times(6 / 56)+1 \times(30 / 56)+2 \times(20 / 56)=5 / 4
$$

We also have

$$
\mathrm{E}\left(B^{2}\right)=0 \times(6 / 56)+1 \times(30 / 56)+4 \times(20 / 56)=110 / 56
$$

so $\operatorname{Var}(X)=\mathrm{E}\left(B^{2}\right)-\mathrm{E}(B)^{2}=(110 / 56)-(25 / 16)=45 / 112$.
(ii) We have $R=5-B$. Hence Propositions 11.2 and 11.3 give

$$
\mathrm{E}(R)=\mathrm{E}(5-B)=5-\mathrm{E}(B)=5-5 / 4=15 / 4
$$

and

$$
\operatorname{Var}(R)=\operatorname{Var}(5-B)=\operatorname{Var}(B)=45 / 112
$$

(b) Since $X(s) \geq m$ for all $s \in S$ we have $r \geq m$ for all $r \in \operatorname{Range}(X)$. Thus

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{r \in \operatorname{Range}(X)} r \mathbb{P}(X=r) \\
& \geq \sum_{r \in \operatorname{Range}(X)} m \mathbb{P}(X=r) \\
& =m \sum_{r \in \text { Range }(X)} \mathbb{P}(X=r) \\
& =m
\end{aligned}
$$

where the last equality follows from Proposition 11.1.
The proof that $\mathrm{E}(X) \leq M$ is similar.
AQ1

$$
\begin{array}{r|ccc}
n & 0 & 1 & 2 \\
\hline P(X=n) & 1 / 8 & 1 / 4 & 5 / 8
\end{array}
$$

Please let me know if you have any comments or corrections

