MTH4107 Introduction to Probability - 2010/11

Q1(a) By Theorem 9.1 from notes

$$
\begin{gathered}
\mathbb{P}\left(H_{1} \cap F\right)=\mathbb{P}(F) \mathbb{P}\left(H_{1} \mid F\right)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \\
\mathbb{P}\left(H_{2} \cap F\right)=\mathbb{P}(F) \mathbb{P}\left(H_{2} \mid F\right)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \\
\mathbb{P}\left(H_{1} \cap H_{2} \cap F\right)=\mathbb{P}(F) \mathbb{P}\left(H_{1} \cap H_{2} \mid F\right)=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}
\end{gathered}
$$

(b) We have

$$
\mathbb{P}\left(H_{1} \cap F\right) \mathbb{P}\left(H_{2} \cap F\right)=\frac{1}{16} \neq \frac{1}{8}=\mathbb{P}\left(H_{1} \cap H_{2} \cap F\right) .
$$

Hence $H_{1} \cap F$ and $H_{2} \cap F$ are not independent.
Q2. Let E_{0}, E_{1}, E_{2} be the events "neither player recovers", "exactly one player recovers" and "both players recover" respectively. Let W be the event "the match is won". By the Theorem of Total Probability (Theorem 9.3)

$$
\mathbb{P}(W)=\mathbb{P}\left(W \mid E_{0}\right) \mathbb{P}\left(E_{0}\right)+\mathbb{P}\left(W \mid E_{1}\right) \mathbb{P}\left(E_{1}\right)+\mathbb{P}\left(W \mid E_{2}\right) \mathbb{P}\left(E_{2}\right) .
$$

Since the recoveries of the two players are independent we have

$$
\begin{aligned}
& \mathbb{P}\left(E_{0}\right)=\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \\
& \mathbb{P}\left(E_{1}\right)=2\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)=\frac{4}{9} \\
& \mathbb{P}\left(E_{2}\right)=\left(\frac{1}{3}\right)^{2}=\frac{1}{9} .
\end{aligned}
$$

We are told the relevant conditional probabilities in the question and so

$$
\mathbb{P}(W)=\frac{1}{16} \times \frac{4}{9}+\frac{1}{2} \times \frac{4}{9}+\frac{3}{4} \times \frac{1}{9}=\frac{1}{3} .
$$

Q3. Consider picking a voter at random with all choices equally likely. Let O be the event "the chosen voter voted for Obama" and U be the event "the chosen voter was aged under 30 ".
(a) By the Theorem of Total Probability (Theorem 9.2) using the partition of S into the two events U and U^{c}

$$
\mathbb{P}(O)=\mathbb{P}(O \mid U) \mathbb{P}(U)+\mathbb{P}\left(O \mid U^{c}\right) \mathbb{P}\left(U^{c}\right)
$$

The question asks for $\mathbb{P}\left(O \mid U^{c}\right)$. Putting in the values from the question

$$
\frac{52.6}{100}=\frac{66}{100} \times \frac{18}{100}+\mathbb{P}\left(O \mid U^{c}\right) \times\left(1-\frac{18}{100}\right)
$$

which gives $\mathbb{P}\left(O \mid U^{c}\right)=0.497$ to 3 decimal places.
(b) This asks for $\mathbb{P}(U \mid O)$. By Bayes Theorem (Theorem 9.4)

$$
\mathbb{P}(U \mid O)=\frac{\mathbb{P}(O \mid U) \mathbb{P}(U)}{\mathbb{P}(O)}=\frac{\frac{66}{100} \times \frac{18}{100}}{\frac{51.6}{100}}=0.226
$$

to 3 decimal places.
Q4*. Let P_{1} be the event that the first test is positive and H be the event that the person has the disease.
(a) By the Theorem of Total Probability

$$
\begin{aligned}
\mathbb{P}\left(P_{1}\right) & =\mathbb{P}\left(P_{1} \mid H\right) \mathbb{P}(H)+\mathbb{P}\left(P_{1} \mid H^{c}\right) \mathbb{P}\left(H^{c}\right) \\
& =\frac{9}{10} \times \frac{1}{10}+\frac{1}{100} \times \frac{9}{10} \\
& =\frac{99}{1000} .
\end{aligned}
$$

(b) By Bayes Theorem

$$
\begin{aligned}
\mathbb{P}\left(H \mid P_{1}\right) & =\frac{\mathbb{P}\left(P_{1} \mid H\right) \mathbb{P}(H)}{\mathbb{P}\left(P_{1}\right)} \\
& =\frac{9}{10} \times \frac{1}{10} \times \frac{1000}{99} \\
& =\frac{10}{11}
\end{aligned}
$$

(c) Let P_{2} be the event that the second test is positive. By the Theorem of Total Probability for conditional probability

$$
\begin{aligned}
\mathbb{P}\left(P_{2} \mid P_{1}\right) & =\mathbb{P}\left(P_{2} \mid H \cap P_{1}\right) \mathbb{P}\left(H \mid P_{1}\right)+\mathbb{P}\left(P_{2} \mid H^{c} \cap P_{1}\right) \mathbb{P}\left(H^{c} \mid P_{1}\right) \\
& =\frac{9}{10} \times \frac{10}{11}+\frac{1}{100} \times \frac{1}{11} \\
& =\frac{901}{1100} .
\end{aligned}
$$

AQ1 (i) $1 / 2 \quad$ (ii) $1 / 6$
AQ2 (ii) 0.12

Please let me know if you have any comments or corrections

