MTH4107 Introduction to Probability - 2010/11

Solutions to Exercise Sheet 5

Q1.
(a) If we record the outcome by listing the children in the order they were born, writing b for boy and g for girl, then the sample space is
$\{g g, g b g, g b b g, g b b b, b g g, b g b g, b g b b, b b g g, b b g b, b b b g, b b b b\}$.
(b) By independence and the fact that each child is equally likely to be a boy or girl we have for example

$$
\mathbb{P}(g g)=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

Similarly,

$$
\mathbb{P}(g b g)=\left(\frac{1}{2}\right)^{3}=\frac{1}{8} .
$$

So $\mathbb{P}(g g) \neq \mathbb{P}(g b g)$ and so not all elements are equally likely.
Note that to answer this part we don't need to calculate the probability of every element of the sample space. It suffices just to find two which have different probabilities. (Of course, you could have chosen a different pair from me).
(c)
$\mathbb{P}(2$ girls $)=\mathbb{P}(\{g g, g b g, g b b g, b g g, b g b g, b b g g\})=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}=\frac{11}{16}$.
Here we have used the same method as part (b) to calculate the probability of each of the outcomes making up the event.
(d) Let A be the event "they have two girls" and B be the event "their first child is a boy". We want $\mathbb{P}(A \mid B)$. By definition

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

We have $\mathbb{P}(B)=1 / 2$ and we can find $\mathbb{P}(A \cap B)$ in a similar way to (c):

$$
\mathbb{P}(A \cap B)=\mathbb{P}(\{b g g, b g b g, b b g g\})=\frac{1}{8}+\frac{2}{16}=\frac{1}{4} .
$$

So

$$
\mathbb{P}(A \mid B)=\frac{1 / 4}{1 / 2}=\frac{1}{2}
$$

Q2. We have $|S|=36,|E|=|O|=18,|Q|=|\{1,4,9,16,25,26\}|=6,|E \cap O|=0$, $|Q \cap E|=|\{4,16,36\}|=3,|Q \cap O|=|\{1,9,25\}|=3$. All choices are equally likely so the probability of any event X is $\frac{|X|}{|S|}$.
(a) $\mathbb{P}(E)=\frac{18}{36}=\frac{1}{2}, \mathbb{P}(O)=\frac{18}{36}=\frac{1}{2}, \mathbb{P}(E \cap O)=\frac{0}{36}=0$. It follows that

$$
\mathbb{P}(E) \mathbb{P}(O)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq 0=\mathbb{P}(E \cap O)
$$

and so E and O are not independent.
(b) $\mathbb{P}(E)=\frac{18}{36}=\frac{1}{2}, \mathbb{P}(Q)=\frac{6}{36}=\frac{1}{6}, \mathbb{P}(E \cap Q)=\frac{3}{36}=\frac{1}{12}$. It follows that

$$
\mathbb{P}(E) \mathbb{P}(Q)=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}=\mathbb{P}(E \cap Q)
$$

and so E and Q are independent.
(c) $\mathbb{P}(O)=\frac{18}{36}=\frac{1}{2}, \mathbb{P}(Q)=\frac{6}{36}=\frac{1}{6}, \mathbb{P}(O \cap Q)=\frac{3}{36}=\frac{1}{12}$. It follows that

$$
\mathbb{P}(O) \mathbb{P}(Q)=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}=\mathbb{P}(O \cap Q)
$$

and so O and Q are independent.
Q3. We have $|S|=52,|A|=4,|R|=|M|=26,|A \cap R|=|A \cap M|=2,|R \cap M|=13$ and $|A \cap R \cap M|=1$. Since the deck is thoroughly shuffled we may assume that each card is equally likely to be chosen and so

$$
\begin{aligned}
\mathbb{P}(A) & =\frac{4}{52}=\frac{1}{13}, \\
\mathbb{P}(R) & =\mathbb{P}(M)=\frac{26}{52}=\frac{1}{2}, \\
\mathbb{P}(A \cap R) & =\mathbb{P}(A \cap M)=\frac{2}{52}=\frac{1}{26}, \\
\mathbb{P}(R \cap M) & =\frac{13}{52}=\frac{1}{4}, \\
\mathbb{P}(A \cap R \cap M) & =\frac{1}{52} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\mathbb{P}(A) \mathbb{P}(R) & =\frac{1}{13} \times \frac{1}{2}=\frac{1}{26}=\mathbb{P}(A \cap R) \\
\mathbb{P}(A) \mathbb{P}(M) & =\frac{1}{13} \times \frac{1}{2}=\frac{1}{26}=\mathbb{P}(A \cap M) \\
\mathbb{P}(R) \mathbb{P}(M) & =\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\mathbb{P}(R \cap M) \\
\mathbb{P}(A) \mathbb{P}(R) \mathbb{P}(M) & =\frac{1}{13} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{52}=\mathbb{P}(A \cap R \cap M)
\end{aligned}
$$

which are precisely the conditions we need for A, R, M to be mutually independent.

Q4(a) Let A be the event "they have two girls" and B be the event "their first child is a boy".
(i) We want $\mathbb{P}(B \mid A)$. By definition

$$
\mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}
$$

We worked out $\mathbb{P}(A \cap B)$ in $\mathrm{Q} 1(\mathrm{~d})$ and $\mathbb{P}(A)$ in Q1(c). So

$$
\mathbb{P}(B \mid A)=\frac{1 / 4}{11 / 16}=\frac{4}{11} .
$$

(ii) The event "their first child is a girl" is B^{c}. The questions asks for $\mathbb{P}\left(B^{c} \mid A\right)$ which by definition is given by

$$
\mathbb{P}\left(B^{c} \mid A\right)=\frac{\mathbb{P}\left(A \cap B^{c}\right)}{\mathbb{P}(A)}
$$

Now

$$
\mathbb{P}\left(A \cap B^{c}\right)=\mathbb{P}\left(\{g g, g b g, g b b g\}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{7}{16}\right.
$$

and so

$$
\mathbb{P}\left(B^{c} \mid A\right)=\frac{7 / 16}{11 / 16}=\frac{7}{11} .
$$

(b)

$$
\begin{aligned}
\mathbb{P}\left(A^{c} \mid B\right) & =\frac{\mathbb{P}\left(A^{c} \cap B\right)}{\mathbb{P}(B)} \quad \text { (by definition) } \\
& =\frac{\mathbb{P}(B)-\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad \text { (by axiom 3) } \\
& =1-\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
& =1-\mathbb{P}(A \mid B) \quad \text { (by definition) }
\end{aligned}
$$

Suppose A and B are independent. Then $\mathbb{P}(A \mid B)=\mathbb{P}(A)$ and

$$
\mathbb{P}\left(A^{c} \mid B\right)=1-\mathbb{P}(A \mid B)=1-\mathbb{P}(A)=\mathbb{P}\left(A^{c}\right)
$$

Hence A^{c} and B are independent.
The statement that $\mathbb{P}\left(A^{c} \mid B\right)=1-\mathbb{P}(A \mid B)$ is illustrated in Q4(a) (i) and (ii).
The statement that A^{c} and B are independent if A and B are independent is illustrated in Q2(b) and (c).

Please let me know if you have any comments or corrections

