MTH4107 Introduction to Probability – 2010/11

Solutions to Exercise Sheet 3

Q1 The key here is to remember the how to interpret the set operations \cup , \cap , and \setminus in words.

- (a) (i) $G \cap H$
 - (ii) $(F \cap G) \setminus H$ (or $F \cap G \cap H^c$)
 - (iii) $(F \cap G \cap H^c) \cup (F \cap G^c \cap H) \cup (F^c \cap G \cap H)$ (there are other possibilities),
- (b) (i) This is the event "the chosen student does not speak Hungarian".
 - (ii) This is the event "the chosen student speaks none of the languages"
 - (iii) This is also the event "the chosen student speaks none of the languages" (notice how the same event can be expressed in ways that look different).
- (c) The first sentence means that |S| = 100, |G| = 30. The second sentence means that $F \cap G = \emptyset$ and $H \subset G$. Again there are equivalent ways of expressing this, for example $F \subset G^c$ and $H \cap G^c = \emptyset$

O2

- (a) $\mathbb{P}(A^c) = 1 \mathbb{P}(A) = 3/5$ (by Proposition 5.1)
- (b) For this question we need the inclusion-exclusion formula for two events (Proposition 5.6).

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = 2/5 + 1/2 - 3/20 = 3/4$$

(c) Since *B* is the disjoint union of $A \cap B$ and $A^c \cap B$, Axiom 3 gives $\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B)$. Thus

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = 1/2 - 3/20 = 7/20$$

(d) $B \setminus A = A^c \cap B$ and so this probability is the same as that calculated in part (c). Hence $\mathbb{P}(B \setminus A) = 7/20$.

Q3* (a) Let *S* be the set of all books, *A* be the set of non-fiction books and *B* be the set of hardback books. Since the book is selected at random from *S* we have $\mathbb{P}(A) = |A|/|S| = 3/10$, $\mathbb{P}(B) = |B|/|S| = 7/10$, and $\mathbb{P}(A \cap B) = |A \cap B|/|S| = 1/5$.

- (i) This asks for $\mathbb{P}(A^c)$. We have $\mathbb{P}(A^c) = 1 \mathbb{P}(A) = 7/10$
- (ii) Here we want $\mathbb{P}(A \cup B)$. We have

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = 3/10 + 7/10 - 1/5 = 4/5$$

1

(iii) We want $\mathbb{P}(A^c \cap B)$. By a similar argument to Q2(c) we have $\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = 7/10 - 1/5 = 1/2$.

(b)

(i) **Proof** By Proposition 5.6, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$. Hence

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B).$$

Since $\mathbb{P}(A \cup B) \leq 1$ by Corollary 5.4, we have

$$\mathbb{P}(A \cap B) \ge \mathbb{P}(A) + \mathbb{P}(B) - 1.$$

(ii) **Proof** Since $A \triangle B$ is the disjoint union of $A \setminus B$ and $B \setminus A$, Axiom 3 gives

$$\mathbb{P}(A \triangle B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A). \tag{1}$$

Similarly

$$\mathbb{P}(A) = \mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B) \tag{2}$$

and

$$\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B). \tag{3}$$

Substituting (2) and (3) into (1) we obtain

$$\mathbb{P}(A\triangle B) = \mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B).$$

OR

Proof Since $A \cup B$ is the disjoint union of $A \triangle B$ and $A \cap B$, Axiom 3 gives

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \triangle B) + \mathbb{P}(A \cap B). \tag{4}$$

By Proposition 5.6

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B). \tag{5}$$

Substituting (5) into (4) and rearranging terms we obtain

$$\mathbb{P}(A \triangle B) = \mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B). \tag{6}$$

•

Please let me know if you have any comments or corrections