MTH4107 Introduction to Probability - 2010/11

Solutions to Exercise Sheet 2

Q1.
(a) This is not a function from A to B since $f(1)=0 \notin B$.
(b) This is a function from A to B since the given rule defines a unique element of B for each element of A.
(c) This is a function, each real number is mapped to a single real number. Note that this is just one function even though it is defined by three different expressions depending on which part of A we are in.
(d) This is not a function since it doesn't assign a single value to 1 (the second line of the definition suggests that $f(1)$ should be 1 , the third line suggests it should be 0). We say in this case that f is not well-defined at 1 . Note that there is no such problem at 0 ; the first and second lines of the definition both define $f(0)$ to be 0 .

Q2. Note that a single violation of the definition is enough to show that a function is not injective/surjective but a short argument is needed to show that a function is injective/surjective.
(a) This is injective (if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $3 x_{1}+4=3 x_{2}+4$ and so $x_{1}=x_{2}$).

It is not surjective (no element of \mathbb{N} maps to 1).
It is not bijective and so does not have an inverse.
(b) This is injective (again if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $3 x_{1}+4=3 x_{2}+4$ and so $x_{1}=x_{2}$). It is surjective (for any $y \in \mathbb{R}$ we have $\frac{y-4}{3} \in \mathbb{R}$ and $f\left(\frac{y-4}{3}\right)=y$).
It is bijective. Since it is bijective it has an inverse function, g, given by $g(y)=$ $\frac{y-4}{3}$.
(c) This is not injective $(f(0)=f(\pi))$.

It is surjective $(\sin (x)$ takes all values in the interval $[-1,1])$.
It is not bijective and so does not have an inverse.
(d) Drawing a quick sketch of this is probably helpful if you haven't done so yet. Notice that $f(x) \geq 0$ if and only if $x \geq 0$.
The function is injective (if $f\left(x_{1}\right)=f\left(x_{2}\right) \geq 0$ then $x_{1}^{2}=x_{2}^{2}$ and $x_{1}, x_{2} \geq 0$ so $x_{1}=x_{2}$, if $f\left(x_{1}\right)=f\left(x_{2}\right)<0$ then $-x_{1}^{2}=-x_{2}^{2}$ and $x_{1}, x_{2}<0$ and so $x_{1}=x_{2}$).
It is surjective (any non-negative $y \in \mathbb{R}$ is the value of f at $x=+\sqrt{y}$, any negative $y \in \mathbb{R}$ is the value of f at $x=-\sqrt{-y}$.
It is bijective. Since it is bijective it has an inverse function, g, given by

$$
g(y)= \begin{cases}+\sqrt{y} & \text { if } y \geq 0 \\ -\sqrt{-y} & \text { if } y<0\end{cases}
$$

Q3 ${ }^{*}$ (a) We first show that f is injective. Suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in$ \mathbb{N}. Consider the case when $f\left(x_{1}\right)=f\left(x_{2}\right) \geq 0$. The definition of f implies that x_{1} and x_{2} must both be even and we have $f\left(x_{1}\right)=x_{1} / 2$ and $f\left(x_{2}\right)=x_{2} / 2$. Thus $x_{1} / 2=x_{2} / 2$ and so $x_{1}=x_{2}$. The case when $f\left(x_{1}\right)=f\left(x_{2}\right)<0$ is similar. The definition of f implies that x_{1} and x_{2} must both be odd in this case, so $f\left(x_{1}\right)=-\left(x_{1}+1\right) / 2$ and $f\left(x_{2}\right)=-\left(x_{2}+1\right) / 2$. Thus $-\left(x_{1}+1\right) / 2=-\left(x_{2}+1\right) / 2$ and we again have $x_{1}=x_{2}$. Thus f is injective.
We next show that f is surjective. Choose $y \in \mathbb{Z}$. If $y \geq 0$ then $2 y \in \mathbb{N}$ and $f(2 y)=y$. If $y<0$ then $-2 y-1 \in \mathbb{N}$ and $f(-2 y-1)=y$. In both cases we can find an element of \mathbb{N} which f maps onto y. Thus f is surjective.
Since f is both injective and surjective, f is bijective.
(b) Let $g: \mathbb{Z} \rightarrow \mathbb{N}$ be defined by

$$
g(y)=\left\{\begin{array}{cc}
2 y & \text { if } y \geq 0, \\
-2 y-1 & \text { if } y<0 .
\end{array}\right.
$$

Choose $x \in \mathbb{N}$. When x is even we have $g \circ f(x)=g(f(x))=g(x / 2)=x$, since $x / 2 \geq 0$. When x is odd we have $g \circ f(x)=g(f(x))=g(-(x+1) / 2)=x$, since $-(x+1) / 2<0$. Thus $g \circ f(x)=x$.
Choose $y \in \mathbb{Z}$. When $y \geq 0$ we have $f \circ g(y)=f(g(y))=f(2 y)=y$, since $2 y$ is even.
When $y<0$ we have $f \circ g(y)=f(g(y))=f(-2 y-1)=y$, since $-2 y-1$ is odd. Thus $f \circ g(y)=y$.
Hence g is an inverse function to f.

Please let me know if you have any comments or corrections

