MTH4107 Introduction to Probability - 2010/11

Exercise Sheet 2

These questions are designed to help you understand the material covered in week 2 lectures. You should write up your solution to the starred question, Q3, clearly and hand it in during your week 4 exercise class for feedback. Put your full name and student number on the top of your solution. It is important that you make a serious attempt to do all of questions Q1-Q3 before week 4 lectures begin. Questions AQ1-AQ3 are for additional practice. You should attempt them when you have time.

Q1. In each of the following cases say whether or not f defines a function from A to B. Give brief explanations.
(a) $A=\{1,2,3,4\}, \quad B=\{1,2,3,4\}, \quad f(x)=x-1$.
(b) $A=\{1,2,3,4\}, \quad B=\{1,2,3,4\}, \quad f(x)=5-x$.
(c) $A=B=\mathbb{R}$,

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } x>1\end{cases}
$$

(d) $A=B=\mathbb{R}$,

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } x \geq 1\end{cases}
$$

Q2. For each of the following functions f say whether or not f is surjective, whether or not f is injective, and whether or not f is bijective. Give brief explanations. For those functions which have an inverse say what the inverse function is. (You are asked lots of things about each function in this question; make sure you don't miss any of them out!)
(a) $f: \mathbb{N} \rightarrow \mathbb{N}, \quad f: x \mapsto 3 x+4$
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f: x \mapsto 3 x+4$
(c) $f: \mathbb{R} \rightarrow\{y \in \mathbb{R}:-1 \leq y \leq 1\}, \quad f: x \mapsto \sin (x)$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f: x \mapsto\left\{\begin{aligned}-x^{2} & \text { if } x \leq 0 \\ x^{2} & \text { if } x \geq 0\end{aligned}\right.$

Q3*. Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)=\left\{\begin{array}{cl}
x / 2 & \text { if } x \in \mathbb{N} \text { is even, } \\
-(x+1) / 2 & \text { if } x \in \mathbb{N} \text { is odd. }
\end{array}\right.
$$

(a) Show that f is a bijection.
(b) Find an inverse function $g: \mathbb{Z} \rightarrow \mathbb{N}$. Verify that your function g is indeed an inverse to f.

AQ1. For each of the following either give an example of such a function or say why there is no such function:
(a) an injective function $f:\{1,2,3,4\} \rightarrow\{1,2,3\}$,
(b) a surjective function $f:\{1,2,3,4\} \rightarrow\{1,2,3\}$,
(c) an injective function $f:\{1,2,3\} \rightarrow\{1,2,3,4\}$,
(d) a surjective function $f:\{1,2,3\} \rightarrow\{1,2,3,4\}$.

AQ2.
(a) Find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is injective but not surjective.
(b) Find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is surjective but not injective.
(c) Let A be a finite set. Is it possible to find a function $f: A \rightarrow A$ which is injective but not surjective, or surjective but not injective? Why?

AQ3. Let A, B, C be finite sets. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are both bijections then $g \circ f: A \rightarrow C$ is a bijection.

