MTH4107 Introduction to Probability

End-term Test Solutions

1.

(a) (BOOKWORK) Suppose A and B are events with $\mathbb{P}(A)>0$ and $\mathbb{P}(B)>0$. Then

$$
\mathbb{P}(B \mid A)=\mathbb{P}(A \mid B) \times \frac{\mathbb{P}(B)}{\mathbb{P}(A)}
$$

(b) Let H be the event the person has the disease and P be the event the test is positive.
(i) (SIMILAR TO CW)

$$
\mathbb{P}(P)=\mathbb{P}(P \mid H) \mathbb{P}(H)+\mathbb{P}\left(P \mid H^{c}\right) \mathbb{P}\left(H^{c}\right)=\frac{9}{10} \times \frac{1}{100}+\frac{1}{9} \times \frac{99}{100}=\frac{119}{1000}
$$

(ii) (SIMILAR TO CW)

$$
\mathbb{P}(H \mid P)=\mathbb{P}(P \mid H) \times \frac{\mathbb{P}(H)}{\mathbb{P}(P)}=\frac{9}{10} \times \frac{1}{100} \times \frac{1000}{119}=\frac{9}{119}
$$

2.

(a) (BOOKWORK) The expected value of X is given by

$$
\mathbb{E}(X)=\sum_{r \in \operatorname{Range}(X)} r \mathbb{P}(X=r) .
$$

Suppose $\mathbb{E}(X)=\mu$. Then the variance of X is given by

$$
\operatorname{Var}(X)=\sum_{r \in \operatorname{Range}(X)}(r-\mu)^{2} \mathbb{P}(X=r) .
$$

(b) (i)

m	0	1	2
$\mathbb{P}(X=m)$	$1 / 9$	$3 / 9$	$5 / 9$

(ii) $\mathbb{E}(X)=0 \times(1 / 9)+1 \times(3 / 9)+2 \times(5 / 9)=13 / 9$ $\mathbb{E}\left(X^{2}\right)=0 \times(1 / 9)+1 \times(3 / 9)+4 \times(5 / 9)=23 / 9$ so $\operatorname{Var}(X)=(23 / 9)-(13 / 9)^{2}=38 / 81$.
3.
(a) (BOOKWORK) X has the Poisson (λ) distribution.

Suppose that, on average, I receive λ telephone calls in a unit of time. Let X be the actual number of calls I receive in a given time interval of unit length. Then X has $\operatorname{Poisson}(\lambda)$ distribution.
(b) (BOOKWORK)

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{m=0}^{\infty} m P(X=m) \\
& =\sum_{m=1}^{\infty} m e^{-\lambda} \lambda^{m} / m! \\
& =\lambda e^{-\lambda} \sum_{k=0}^{\infty} \lambda^{k} / k! \\
& =\lambda .
\end{aligned}
$$

since $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$
4. (SIMILAR TO CW)
(a)

m	0	1	2
$\mathbb{P}(X=m)$	$5 / 18$	$4 / 9$	$5 / 18$
$\mathbb{P}(Y=m)$	$5 / 18$	$4 / 9$	$5 / 18$

(b) $\mathbb{E}(X)=4 / 9+5 / 9=1=\mathbb{E}(Y)$.
$\mathbb{E}(X Y)=1 / 9+1 / 3+1 / 3+4 / 9=11 / 9$ so $\operatorname{Cov}(X, Y)=11 / 9-1=2 / 9$.
(c) X and Y are not independent since $\operatorname{Cov}(X, Y) \neq 0$ (or give a direct proof).

