Time Series Course-work 6
 Solutions to the Theory Questions

Question 6.2.1

(a) Mixed seasonal $A R M A(1,0) \times(0,1)_{12}$
(b) Seasonal $M A(2)_{4}$
(c) $A R(1)$
(d) Seasonal $A R I M A(2,0,1) \times(0,1,0)_{12}$
(e) $\operatorname{ARIM} A(2,1,0)$

Question 6.2.2

An $A R(1)_{4}$ model can be written as $\left(1-\Phi B^{4}\right) X_{t}=Z_{t}$ or $\Phi\left(B^{4}\right) X_{t}=Z_{t}$. To obtain the ACF it is convenient to represent is as a linear process of the form

$$
X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}=\psi(B) Z_{t}
$$

where $\psi(B)=\sum_{j=0}^{\infty} \psi_{j} B^{j}$. Then we can write

$$
X_{t}=\psi(B) Z_{t}=\psi(B) \Phi\left(B^{4}\right) X_{t}
$$

which means that

$$
1=\psi(B) \Phi\left(B^{4}\right)
$$

or in full

$$
1=\left(1+\psi_{1} B+\psi_{2} B^{2}+\psi_{3} B^{3}+\psi_{4} B^{4}+\psi_{5} B^{5}+\ldots\right)\left(1-\Phi B^{4}\right)
$$

The right hand side can be rearranged to
$1+\psi_{1} B+\psi_{2} B^{2}+\psi_{3} B^{3}+\left(\psi_{4}-\Phi\right) B^{4}+\left(\psi_{5}-\psi_{1} \Phi\right) B^{5}+\left(\psi_{6}-\psi_{2} \Phi\right) B^{6}+\left(\psi_{7}-\psi_{3} \Phi\right) B^{7}+\left(\psi_{8}-\psi_{4} \Phi\right) B^{8}+\ldots$
Comparing the coefficients of B^{j} on the LHS and the RHS we obtain

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=\psi_{2}=\psi_{3}=0 \\
& \psi_{4}=\Phi \\
& \psi_{5}=\psi_{1} \Phi=0 \\
& \psi_{6}=\psi_{2} \Phi=0 \\
& \psi_{7}=\psi_{3} \Phi=0 \\
& \psi_{8}=\psi_{4} \Phi=\Phi^{2}
\end{aligned}
$$

That is

$$
\psi_{j}= \begin{cases}0 & \text { for } j \neq 4 k, k=1,2, \ldots \\ \Phi^{k} & \text { for } j=4 k, k=0,1,2, \ldots\end{cases}
$$

X_{t} is a zero mean process and by Corrolary 4.1 we have

$$
\gamma(\tau)=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+\tau}
$$

which can be written as

$$
\gamma(\tau)=\left\{\begin{array}{lc}
\sigma^{2} \sum_{j=0}^{\infty} \psi_{4 j} \psi_{4 j+\tau}=\sigma^{2} \sum_{j=0}^{\infty} \Phi^{4 j} \Phi^{4 j+\tau}, & \text { for } \tau=4 k, k=0,1,2, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

Hence, for $\tau=4 k, k=0,1,2, .$. , we obtain

$$
\gamma(\tau)=\sigma^{2} \Phi^{\tau} \sum_{j=0}^{\infty} \Phi^{8 j}=\sigma^{2} \frac{\Phi^{\tau}}{1-\Phi^{8}}
$$

Then, dividing $\gamma(\tau)$ by $\gamma(0)$ we obtain the required result.

