Time Series Course-work 5 Solutions to the Theory Questions

Question 5.2.1

(a) $X_{t}=0.3 X_{t-1}+Z_{t}$ is an $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ process with $p=1, q=0$, i.e, it is $\operatorname{AR}(1)$.

In B notation it can be written as $(1-0.3 B) X_{t}=Z_{t}$.

It is a causal process as the root of the associated polynomial $\phi(z)=1-0.3 z$ is $z=\frac{10}{3}>1$, i.e, it is outside the unit interval $[-1,1]$.
(b) $X_{t}=Z_{t}-1.3 Z_{t-1}+0.4 Z_{t-2}$ is an $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ process with $p=0, q=2$, i.e., it is $\mathrm{MA}(2)$.

In B notation it can be written as $X_{t}=\left(1-1.3 B+0.4 B^{2}\right) Z_{t}$.

To check invertibility we examine roots of the associated polynomial $\theta(z)=1-1.3 z+0.4 z^{2}$. Here we have two real roots $z_{1}=1.25$ and $z_{2}=2$. Both roots are outside the unit interval, hence the process is invertible.
(c) $X_{t}-0.5 X_{t-1}=Z_{t}-1.3 Z_{t-1}+0.4 Z_{t-2}$ can be written as $(1-0.5 B) X_{t}=\left(1-1.3 B+0.4 B^{2}\right) Z_{t}$. First, however, we need to check if there are common factors. The associated polynomial $\theta(z)=1-1.3 z+$ $0.4 z^{2}$ can be written as

$$
\left(1-1.25^{-1} z\right)\left(1-2^{-1} z\right)=(1-0.8 z)(1-0.5 z)
$$

Hence, there is a common factor $1-0.5 z$ and the model can be simplified. Dividing both sides of the model by $1-0.5 z$ we obtain

$$
X_{t}=(1-0.8 B) Z_{t}
$$

This is an $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ with $p=0, q=1$, i.e, it is $\operatorname{MA}(1)$. This is an invertible process as the root of the associated polynomial $\theta(z)=1-0.8 z$ is outside the unit interval.

Question 5.2.2

(a) $X_{t}=Z_{t}+0.7 Z_{t-1}$ represents an invertible MA(1) process with $\theta=0.7$. For an MA(1) process we have the following formulae for the ACF and the PACF, respectively.

$$
\begin{gathered}
\rho(\tau)=\left\{\begin{array}{cc}
\frac{\theta}{1+\theta^{2}} & \text { for } \tau=1 \\
0 & \text { for } \tau>1
\end{array}\right. \\
\phi_{\tau \tau}=-\frac{(-\theta)^{\tau}\left(1-\theta^{2}\right)}{1-\theta^{2(\tau+1)}}, \text { for } \tau \geq 1
\end{gathered}
$$

For $\theta=0.7$ we obtain

$$
\rho(\tau)=\left\{\begin{array}{cc}
0.47 & \text { for } \tau=1 \\
0 & \text { for } \tau>1
\end{array}\right.
$$

and

$$
\phi_{11}=0.47, \phi_{22}=-0.28, \phi_{33}=0.19, \phi_{44}=-0.13, \phi_{55}=0.09
$$

The ACF cuts off after lag 1, PACF alternates sign and tails off.

(b) $X_{t}=0.9 X_{t-1}-0.2 X_{t-2}+Z_{t}$ represents a causal AR(2) process with $\phi_{1}=0.9$ and $\phi_{2}=-0.2$. To obtain the ACF we may use the difference equations of order two (as in Example 6.4 of Lecture Notes). Then the ACF is

$$
\rho(\tau)=c_{1} z_{1}^{-\tau}+c_{2} z_{2}^{-\tau}
$$

where the roots of the associated polynomial $\phi(z)=1-0.9 z+0.2 z^{2}$ are $z_{1}=2$ and $z_{2}=2.5$ and the constants c_{1}, c_{2} can be found from the initial conditions and are equal to $c_{1}=3.5$ and $c_{2}=-2.5$. Hence, we obtain

$$
\rho(\tau)=3.5 \times 2^{-\tau}-2.5 \times 2.5^{-\tau}, \text { for } \tau=1,2, \ldots
$$

The first five values of the ACF are

$$
\rho(1)=0.75, \rho(2)=0.48, \rho(3)=0.28, \rho(4)=0.15, \rho(5)=0.08
$$

From Remark 6.11 of the Lecture Notes we have the PACF for $\operatorname{AR}(2)$ equal to

$$
\begin{aligned}
\phi_{11} & =\frac{\phi_{1}}{1-\phi_{2}}=0.75 \\
\phi_{22} & =\phi_{2}=-0.2 \\
\phi_{\tau \tau} & =0 \text { for } \tau>2
\end{aligned}
$$

For AR(2) the ACF tails off while the PACF cuts off after lag 2.

