## Time Series Course-work 3 Solutions to the Theory Questions

## Question 1

An MA(2) model is

$$
X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}, \quad \text { where, } Z_{t} \sim W N\left(0, \sigma^{2}\right)
$$

To derive the ACVF and then the ACF of the MA(2) we calculate $\operatorname{cov}\left(X_{t}, X_{t+\tau}\right)$ for all $t, \tau=0, \pm 1, \pm 2, \ldots$.

$$
\begin{aligned}
\operatorname{cov}\left(X_{t}, X_{t+\tau}\right) & =\operatorname{cov}\left(Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}, Z_{t+\tau}+\theta_{1} Z_{t+\tau-1}+\theta_{2} Z_{t+\tau-2}\right) \\
& =\mathrm{E}\left[\left(Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}\right)\left(Z_{t+\tau}+\theta_{1} Z_{t+\tau-1}+\theta_{2} Z_{t+\tau-2}\right)\right]
\end{aligned}
$$

as $\mathrm{E}\left(Z_{t}\right)=0$ for all $t$. This gives

$$
\begin{aligned}
\operatorname{cov}\left(X_{t}, X_{t+\tau}\right)= & \mathrm{E}\left[Z_{t} Z_{t+\tau}+\theta_{1} Z_{t} Z_{t+\tau-1}+\theta_{2} Z_{t} Z_{t+\tau-2}\right. \\
& +\theta_{1} Z_{t-1} Z_{t+\tau}+\theta_{1}^{2} Z_{t-1} Z_{t+\tau-1}+\theta_{1} \theta_{2} Z_{t-1} Z_{t+\tau-2} \\
& \left.+\theta_{2} Z_{t-2} Z_{t+\tau}+\theta_{1} \theta_{2} Z_{t-2} Z_{t+\tau-1}+\theta_{2}^{2} Z_{t-2} Z_{t+\tau-2}\right]
\end{aligned}
$$

Hence, as $Z_{t}$ are uncorrelated random variables with $\operatorname{var}\left(Z_{t}\right)=\sigma^{2}$, we obtain

$$
\gamma(\tau)=\left\{\begin{array}{lll}
\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \sigma^{2} & \text { for } & \tau=0 \\
\left(\theta_{1}+\theta_{1} \theta_{2}\right) \sigma^{2} & \text { for } & \tau= \pm 1 \\
\theta_{2} \sigma^{2} & \text { for } & \tau \pm 2 \\
0 & \text { for } & |\tau|>2
\end{array}\right.
$$

Dividing each of these expressions by $\gamma(0)$ we obtain the autocorrelation function $\rho(\tau)$

$$
\rho(\tau)=\left\{\begin{array}{lll}
1 & \text { for } & \tau=0 \\
\frac{\left(\theta_{1}+\theta_{1} \theta_{2}\right)}{1+\theta_{2}+\theta_{2}^{2}} & \text { for } & \tau= \pm 1 \\
\frac{\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} & \text { for } & \tau \pm 2 \\
0 & \text { for } & |\tau|>2
\end{array}\right.
$$

## Question 2

First note that $\mathrm{E}\left(Z_{t}\right)=0$ for all $t$ and so $\mathrm{E}\left(X_{t}\right)=0$ for all $t$. Then the autocovariance is

$$
\operatorname{cov}\left(X_{t}, X_{t+\tau}\right)=\frac{1}{(q+1)^{2}} \mathrm{E}\left[\sum_{k=0}^{q} Z_{t-k} \sum_{j=0}^{q} Z_{t+\tau-j}\right] .
$$

For $\tau=0$ we obtain

$$
\gamma(0)=\frac{1}{(q+1)^{2}}(q+1) \sigma^{2}=\frac{\sigma^{2}}{q+1}
$$

as $Z_{t}$ are uncorrelated and there are exactly $q+1$ products $Z_{j} Z_{j}$ (with same indexes) and their expectation is $\mathrm{E}\left(Z_{j}^{2}\right)=\sigma^{2}$. Similarly, there will be $q+1-\tau$ pairs $Z_{j} Z_{j}$ for $\tau=$ $1,2, \ldots, q$ and none for $\tau>q$. Hence

$$
\gamma(\tau)=\frac{1}{(q+1)^{2}}(q+1-\tau) \sigma^{2} \text { for } \tau=1,2, \ldots, q
$$

Hence

$$
\rho(\tau)= \begin{cases}\frac{(q+1-\tau) \sigma^{2}}{(q+1)^{2}} \frac{q+1}{\sigma^{2}}=\frac{q+1-\tau}{q+1} & \text { for } \tau=0,1,2, \ldots, q \\ 0 & \text { for } \tau>q\end{cases}
$$

## Question 3

Additive model $X_{t}=m_{t}+s_{t}+Y_{t}$

We assume that $s_{t}=s_{t-12}$ and $m_{t}=\beta_{0}+\beta_{1} t$. Then

$$
\begin{aligned}
\nabla_{12} X_{t} & =X_{t}-X_{t-12} \\
& =m_{t}+s_{t}+Y_{t}-\left(m_{t-12}+s_{t-12}+Y_{t-12}\right) \\
& =m_{t}-m_{t-12}+\nabla_{12} Y_{t} \\
& =\beta_{0}+\beta_{1} t-\left(\beta_{0}+\beta_{1}(t-12)\right)+\nabla_{12} Y_{t} \\
& =12 \beta_{1}+\nabla_{12} Y_{t}
\end{aligned}
$$

To check stationarity we check if the expectation and variance are constant and the covariances do not depend on $t$.
$\mathrm{E}\left(\nabla_{12} X_{t}\right)=12 \beta_{1}$, constant.

$$
\begin{aligned}
\operatorname{cov}\left(\nabla_{12} X_{t}, \nabla_{12} X_{t+\tau}\right) & =\operatorname{cov}\left(\nabla_{12} Y_{t}, \nabla_{12} Y_{t+\tau}\right) \\
& =\operatorname{cov}\left(Y_{t}-Y_{t-12}, Y_{t+\tau}-Y_{t+\tau-12}\right) \\
& =\operatorname{cov}\left(Y_{t}, Y_{t+\tau}\right)-\operatorname{cov}\left(Y_{t-12}, Y_{t+\tau}\right)-\operatorname{cov}\left(Y_{t}, Y_{t+\tau-12}\right)+\operatorname{cov}\left(Y_{t-12}, Y_{t+\tau-12}\right) \\
& =2 \gamma_{Y}(\tau)-\gamma_{Y}(\tau+12)-\gamma_{Y}(\tau-12)
\end{aligned}
$$

This does not depend on $t$, hence the differenced series is stationary.

Multiplicative model $X_{t}=m_{t} s_{t}+Y_{t}$

Here we have

$$
\begin{aligned}
\nabla_{12} X_{t} & =m_{t} s_{t}+Y_{t}-\left(m_{t-12} s_{t-12}+Y_{t-12}\right) \\
& =\left(\beta_{0}+\beta_{1} t\right) s_{t}-\left(\beta_{0}+\beta_{1}(t-12)\right) s_{t-12}+\nabla_{12} Y_{t} \\
& =12 \beta_{1} s_{t-12}+\nabla_{12} Y_{t}
\end{aligned}
$$

It gives

$$
\mathrm{E}\left(\nabla_{12} X_{t}\right)=12 \beta_{1} s_{t-12}
$$

This still depends on $t$, it is not a constant. However, as $s_{t}=s_{t-12}=s_{t-24}$, we should eliminate the seasonality effect from $\nabla_{12} X_{t}$ by applying the same operator again, that is by $\nabla_{12}\left(\nabla_{12} X_{t}\right)$, as follows

$$
\begin{aligned}
\nabla_{12}^{2}=\nabla_{12}\left(\nabla_{12} X_{t}\right) & =12 \beta_{1} s_{t-12}+\nabla_{12} Y_{t}-\left(12 \beta_{1} s_{t-24}+\nabla_{12} Y_{t-12}\right) \\
& =Y_{t}-2 Y_{t-12}+Y_{t-24}
\end{aligned}
$$

Then $\mathrm{E}\left(\nabla_{12}^{2} X_{t}\right)=0$ and $\left.\operatorname{cov}\left(\nabla_{12}^{2} X_{t}\right), \nabla_{12}^{2} X_{t+\tau}\right)$ is a constant, what can be easily shown, similarly as in the previous part. Hence $\nabla_{12}\left(\nabla_{12} X_{t}\right)=\nabla_{12}^{2} X_{t}$ is a stationary process.

## Question 4

See lecture notes, Chapter 4.6.

