Time Series Course-work 2

 Solutions to the Theory Questions
Question 1

The definition of covariance and simple properties of expectation give:

$$
\begin{aligned}
\operatorname{cov}\left(X_{1}, X_{2}\right) & =\mathrm{E}\left[\left(X_{1}-\mathrm{E}\left(X_{1}\right)\right)\left(X_{2}-\mathrm{E}\left(X_{2}\right)\right)\right] \\
& =\mathrm{E}\left[X_{1} X_{2}-X_{1} \mathrm{E}\left(X_{2}\right)-X_{2} \mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right)\right] \\
& =\mathrm{E}\left(X_{1} X_{2}\right)-\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right)-\mathrm{E}\left(X_{2}\right) \mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right) \\
& =\mathrm{E}\left(X_{1} X_{2}\right)-\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right)
\end{aligned}
$$

Question 2

There are various ways to show that $-1 \leq \rho\left(X_{1}, X_{2}\right) \leq 1$. Here we use the fact that (by definition) variance of any random variable cannot be negative.

For a combination of two random variables we may write:

$$
0 \leq \operatorname{var}\left(\lambda X_{1}+X_{2}\right)=\lambda^{2} \operatorname{var}\left(X_{1}\right)+2 \lambda \operatorname{cov}\left(X_{1} X_{2}\right)+\operatorname{var}\left(X_{2}\right)
$$

for any real constant λ. This may be treated as a quadratic function in λ, which must be nonnegative. Hence, the discriminant $\Delta \leq 0$, that is

$$
\Delta=4\left[\operatorname{cov}\left(X_{1} X_{2}\right)\right]^{2}-4 \operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right) \leq 0 .
$$

This gives

$$
\left[\operatorname{cov}\left(X_{1} X_{2}\right)\right]^{2} \leq \operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right)
$$

or

$$
\left|\operatorname{cov}\left(X_{1} X_{2}\right)\right| \leq \sqrt{\operatorname{var}\left(X_{1}\right)} \sqrt{\operatorname{var}\left(X_{2}\right)}
$$

Hence

$$
\left|\rho\left(X_{1} X_{2}\right)\right|=\left|\frac{\operatorname{cov}\left(X_{1} X_{2}\right)}{\sqrt{\operatorname{var}\left(X_{1}\right)} \sqrt{\operatorname{var}\left(X_{2}\right)}}\right| \leq 1 .
$$

Question 3

(a) The marginal distributions of X_{1} and of X_{2} are, respectively,

$$
\begin{array}{c|ccccc}
x_{1} & 51 & 52 & 53 & 54 & 55 \\
\hline P\left(X_{1}=x_{1}\right) & 0.28 & 0.28 & 0.22 & 0.09 & 0.13 \\
x_{2} & 51 & 52 & 53 & 54 & 55 \\
\hline P\left(X_{2}=x_{2}\right) & 0.18 & 0.15 & 0.35 & 0.12 & 0.20
\end{array}
$$

(b) Use formulae (3.23) and (3.27) of Chapter 3 (Lecture Notes). Here we have $P\left(X_{1}=\right.$ 55) $=0.13$ and we obtain
$\mathrm{E}\left(X_{2} \mid X_{1}=55\right)=\frac{1}{0.13}(51 \times 0.01+52 \times 0.01+53 \times 0.05+54 \times 0.03+55 \times 0.03)=53.46$.
Expected sale of aspirin in September by the neighborhood drugstore is 53.46 .

Question 4

The joint density function of random variables X_{1} and X_{2} is given by

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cl}
4 x_{1} x_{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}, & \text { for } 0 \leq x_{1}<\infty, 0 \leq x_{2}<\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Marginal density function of X_{1} is

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}=\int_{0}^{\infty} 4 x_{1} x_{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)} d x_{2}
$$

Knowing that the derivative of $e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}$ with respect to x_{2} is

$$
\frac{\partial e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}}{\partial x_{2}}=-2 x_{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

we can write

$$
\begin{aligned}
\int_{0}^{\infty} 4 x_{1} x_{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)} d x_{2} & =-2 x_{1} \int_{0}^{\infty}-2 x_{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)} d x_{2} \\
& =-2 x_{1}\left(e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}\right)_{0}^{\infty}=-2 x_{1}\left(-e^{-x_{1}^{2}}\right) \\
& =2 x_{1} e^{-x_{1}^{2}}
\end{aligned}
$$

Hence,

$$
f_{X_{1}}\left(x_{1}\right)=2 x_{1} e^{-x_{1}^{2}}
$$

Similarly, we obtain

$$
f_{X_{2}}\left(x_{2}\right)=2 x_{2} e^{-x_{2}^{2}}
$$

(b) Conditional density function of X_{1} given $X_{2}=x_{2}$ is

$$
f_{X_{1}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}=\frac{4 x_{1} x_{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}}{2 x_{2} e^{-x_{2}^{2}}}=2 x_{1} e^{-x_{1}^{2}}
$$

Similarly, we obtain

$$
f_{X_{2}}\left(x_{2} \mid x_{1}\right)=2 x_{2} e^{-x_{2}^{2}}
$$

(c)The two variables are independent and so

$$
\begin{aligned}
\mathrm{E}\left(X_{1} \mid X_{2}=x_{2}\right) & =\mathrm{E}\left(X_{1}\right) \\
& =\int_{0}^{\infty} x_{1}^{2} e^{-x_{1}^{2}} d x_{1} \\
& =\left(-x_{1} e^{-x_{1}^{2}}\right)_{0}^{\infty}+\int_{0}^{\infty} e^{-x_{1}^{2}} d x_{1} \quad \quad \text { (by parts) } \\
& =0+\int_{0}^{\infty} e^{-x_{1}^{2}} d x_{1} \\
& =\frac{1}{\sqrt{2}} \int_{0}^{\infty} e^{-\frac{z^{2}}{2}} d z \quad \quad \text { (by substitution } x=\frac{z}{\sqrt{2}} \text {) } \\
& =\sqrt{\pi} \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\frac{z^{2}}{2}} d z \quad \text { (standard normal distribution) } \\
& =\frac{\sqrt{\pi}}{2}
\end{aligned}
$$

Similarly for X_{2}.

