Time Series Course-work 1 Solutions to the Theory Questions

Question 1

See the derivation of the linear filter given in the lecture notes, Chapter 2, pages 18-21.

Question 2

This moving average is based on the expansion of the expression $(a+b)^{n}$:

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r} .
$$

The successive terms in the expansion of $\left(\frac{1}{2}+\frac{1}{2}\right)^{n}$ are

$$
a^{n-r} b^{r}=\left(\frac{1}{2}\right)^{n-r}\left(\frac{1}{2}\right)^{r}=\left(\frac{1}{2}\right)^{n} \quad \text { for } r=0,1, \ldots, n .
$$

For $q=2$ we have $n=2 q=4$ and

$$
a^{n-r} b^{r}=\left(\frac{1}{2}\right)^{4}=\frac{1}{16} \text { for } r=0,1,2,3,4 .
$$

The coefficients $\binom{n}{r}$ are

$$
\binom{4}{0}=1,\binom{4}{1}=4, \quad\binom{4}{2}=6,\binom{4}{3}=4,\binom{4}{4}=1 .
$$

Hence, the m.a. is

$$
\left\{a_{j}\right\}=\frac{1}{16}(1,4, \mathbf{6}) .
$$

For $q=3$ we obtain

$$
\left\{a_{j}\right\}=\frac{1}{64}(1,6,15, \mathbf{2 0}) .
$$

Question 3

See lecture notes, pages 22-23. Convolution of two linear filters is a filter which is obtained as

$$
\left\{c_{i}\right\}=\left\{a_{j}\right\} \star\left\{b_{k}\right\},
$$

where $\left\{c_{i}\right\}$ is the sum of all products for which $j+k=i$. Here we have

$$
\begin{aligned}
\left\{c_{i}\right\} & =\left(a_{-2}, a_{-1}, a_{0}, a_{1}\right) \star\left(b_{0}, b_{1}, b_{2}\right) \\
& =\left(a_{-2} b_{0}, a_{-2} b_{1}+a_{-1} b_{0}, a_{-2} b_{2}+a_{-1} b_{1}+a_{0} b_{0}, a_{-1} b_{2}+a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}, a_{1} b_{2}\right) \\
& =\left(c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2}, c_{3}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \star\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \\
& \left(\frac{1}{12}, \frac{1}{6}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{12}\right)
\end{aligned}
$$

and the new series Z_{t} is

$$
Z_{t}=\frac{1}{12} X_{t-2}+\frac{1}{6} X_{t-1}+\frac{1}{4} X_{t}+\frac{1}{4} X_{t+1}+\frac{1}{6} X_{t+2}+\frac{1}{12} X_{t+3} .
$$

Question 4

$$
\begin{aligned}
\nabla^{3} X_{t} & =\nabla\left(\nabla^{2} X_{t}\right)=(1-B)\left(1-2 B+B^{2}\right) X_{t} \\
& =\left(1-3 B+3 B^{2}-B^{3}\right) X_{t}=X_{t}-3 X_{t-1}+3 X_{t-2}-X_{t-3}
\end{aligned}
$$

Now,

$$
\left(a_{-1}, a_{0}\right) \star\left(b_{-1}, b_{0}\right)=\left(a_{-1} b_{-1}, a_{-1} b_{0}+a_{0} b_{-1}, a_{0} b_{0}\right)=\left(c_{-2}, c_{-1}, c_{0}\right)
$$

Hence,

$$
(-1,1) \star(-1,1)=(1,-1-1,1)=(1,-2,1) .
$$

Then,

$$
\left(c_{-2}, c_{-1}, c_{0}\right) \star\left(d_{-1}, d_{0}\right)=\left(c_{-2} d_{-1}, c_{-2} d_{0}+c_{-1} d_{-1}, c_{-1} d_{0}+c_{0} d_{-1}, c_{0} d_{0}\right)
$$

and so

$$
(1,-2,1) \star(-1,1)=(-1,1+2,-2-1,1)=(-1,3,-3,1)
$$

what gives the following linear filter

$$
X_{t}-3 X_{t-1}+3 X_{t-2}-X_{t-3}
$$

which is equal to $\nabla^{3} X_{t}$.

