Part 2 We use the notation as in the lecture notes, specifically

$$
\begin{aligned}
& \phi(z)=1-\phi_{1} z-\ldots-\phi_{p} z^{p} \\
& \theta(z)=1+\theta_{1} z+\ldots+\theta_{q} z^{q} \\
& Z_{t} \sim W N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Choose a correct answer for each of the following problems.

1. There is a stationary solution X_{t} to $\phi(B) X_{t}=\theta(B) Z_{t}$ process if and only if
(a) $\phi(z) \neq 0$ for all $|z|=1$.
(b) $\phi(z)=0$ for all $|z|=1$.
(c) $\theta(z) \neq 0$ for all $|z|=1$.
(d) $\theta(z)=0$ for all $|z|=1$.
2. An $A R M A(p, q)$ process is causal if and only if
(a) $\phi(z)=0$ only for $|z|>1$.
(b) $\phi(z)=0$ only for $|z|<1$.
(c) $\theta(z)=0$ only for $|z|>1$.
(d) $\theta(z)=0$ only for $|z|<1$.
3. The process $X_{t}-0.7 X_{t-1}+0.1 X_{t-2}=Z_{t}+0.5 Z_{t-1}$ is
(a) causal but not invertible.
(b) neither causal nor invertible.
(c) causal and invertible.
(d) not causal but invertible.
4. The following is true for ACF and PACF of $\operatorname{AR}(\mathrm{p})$:
(a) ACF tails off and PACF cuts of after lag q.
(b) ACF cuts off after lag p and PACF tails off.
(c) ACF cuts off after lag p and PACF cuts of after lag q .
(d) ACF tails off and PACF cuts off after lag p.
5. PACF of the process $X_{t}-0.7 X_{t-1}+0.1 X_{t-2}=Z_{t}$ is equal to:
(a) $\phi_{\tau \tau}=0.7^{\tau}$ for $\tau=0,1,2, \ldots$.
(b) $\phi_{11}=\frac{7}{11}, \phi_{22}=-0.1, \phi_{\tau \tau}=0$ for $\tau>2$.
(c) $\phi_{11}=\frac{7}{11}, \phi_{\tau \tau}=0$ for $\tau>1$.
(d) $\phi_{11}=0.7, \phi_{22}=-0.1, \phi_{\tau \tau}=0$ for $\tau>2$.
6. The process $X_{t}-0.5 X_{t-1}=Z_{t}-1.3 Z_{t-1}+0.4 Z_{t-2}$ represents
(a) $A R M A(1,2)$.
(b) $A R(1)$.
(c) $M A(1)$.
(d) $\operatorname{ARMA}(1,1)$.
7. The following is true for ACF and PACF of $\operatorname{ARMA}(1,1)_{4}$:
(a) ACF cuts off after lag 4 and PACF tails off.
(b) ACF cuts off after lag 4 and PACF tails off at lags $4 k, k=1,2, \ldots$
(c) Both ACF and PACF tail off at lags $4 k, k=1,2, \ldots$
(d) Both ACF and PACF cut off at lag 4.
and the values of ACF and PACF are zero at non-seasonal lags, i.e., at $\tau \neq 4 k$.
8. ACF of the process $X_{t}=Z_{t}+0.5 Z_{t-4}$ is
(a) $\rho(0)=1, \rho(\pm 4)=0.5^{4}, \rho(\tau)=0$ otherwise.
(b) $\rho(0)=1, \rho(\pm 4)=0.5, \rho(\tau)=0$ otherwise.
(c) $\rho(0)=1, \rho(\pm 4)=0.25, \rho(\tau)=0$ otherwise.
(d) $\rho(0)=1, \rho(\pm 4)=0.4, \rho(\tau)=0$ otherwise.
9. A time series X_{t} has the following ACF

$$
\begin{aligned}
& \rho(12 j)=0.8^{j} \\
& \rho(12 j \pm 1)=0.4 \times 0.8^{j} \text { for } j=0, \pm 1, \pm 2, \ldots \\
& \rho(\tau)=0 \text { otherwise }
\end{aligned}
$$

Which of the following models it could be the ACF of?
(a) $X_{t}+0.8 X_{t-12}=Z_{t}-0.5 Z_{t-1}$.
(b) $X_{t}-0.5 X_{t-12}=Z_{t}+0.8 Z_{t-1}$.
(c) $X_{t}-0.8 X_{t-12}=Z_{t}+0.4 Z_{t-1}$.
(d) $X_{t}-0.8 X_{t-12}=Z_{t}+0.5 Z_{t-1}$.
10. The process $\left(1-B^{7}\right)(1-B) X_{t}=\left(1+0.9 B^{7}\right)(1+0.5 B) Z_{t}$ is
(a) $\operatorname{ARIMA}(0,0,1) \times(1,1,1)_{7}$.
(b) $\operatorname{ARIM} A(0,1,0) \times(1,1,1)_{7}$.
(c) $\operatorname{ARIMA}(1,1,1) \times(1,1,1)_{7}$.
(d) $\operatorname{ARIMA}(0,1,1) \times(0,1,1)_{7}$.

