Part 2 We use the notation as in the lecture notes, specifically

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p$$

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q$$

$$Z_t \sim WN(0, \sigma^2)$$

Choose a correct answer for each of the following problems.

- 1. There is a stationary solution X_t to $\phi(B)X_t = \theta(B)Z_t$ process if and only if
 - (a) $\phi(z) \neq 0$ for all |z| = 1.
 - (b) $\phi(z) = 0$ for all |z| = 1.
 - (c) $\theta(z) \neq 0$ for all |z| = 1.
 - (d) $\theta(z) = 0$ for all |z| = 1.
- 2. An ARMA(p,q) process is causal if and only if
 - (a) $\phi(z) = 0$ only for |z| > 1.
 - (b) $\phi(z) = 0$ only for |z| < 1.
 - (c) $\theta(z) = 0$ only for |z| > 1.
 - (d) $\theta(z) = 0$ only for |z| < 1.
- 3. The process $X_t 0.7X_{t-1} + 0.1X_{t-2} = Z_t + 0.5Z_{t-1}$ is
 - (a) causal but not invertible.
 - (b) neither causal nor invertible.
 - (c) causal and invertible.
 - (d) not causal but invertible.
- 4. The following is true for ACF and PACF of AR(p):
 - (a) ACF tails off and PACF cuts of after lag q.
 - (b) ACF cuts off after lag p and PACF tails off.
 - (c) ACF cuts off after lag p and PACF cuts of after lag q.
 - (d) ACF tails off and PACF cuts off after lag p.
- 5. PACF of the process $X_t 0.7X_{t-1} + 0.1X_{t-2} = Z_t$ is equal to:
 - (a) $\phi_{\tau\tau} = 0.7^{\tau}$ for $\tau = 0, 1, 2, ...$
 - (b) $\phi_{11} = \frac{7}{11}, \phi_{22} = -0.1, \phi_{\tau\tau} = 0$ for $\tau > 2$.
 - (c) $\phi_{11} = \frac{7}{11}, \phi_{\tau\tau} = 0$ for $\tau > 1$.
 - (d) $\phi_{11} = 0.7, \phi_{22} = -0.1, \phi_{\tau\tau} = 0$ for $\tau > 2$.
- 6. The process $X_t 0.5X_{t-1} = Z_t 1.3Z_{t-1} + 0.4Z_{t-2}$ represents
 - (a) ARMA(1,2).
 - (b) AR(1).
 - (c) MA(1).
 - (d) ARMA(1,1).

- 7. The following is true for ACF and PACF of $ARMA(1,1)_4$:
 - (a) ACF cuts off after lag 4 and PACF tails off.
 - (b) ACF cuts off after lag 4 and PACF tails off at lags 4k, k = 1, 2, ...
 - (c) Both ACF and PACF tail off at lags 4k, k = 1, 2, ...
 - (d) Both ACF and PACF cut off at lag 4.

and the values of ACF and PACF are zero at non-seasonal lags, i.e., at $\tau \neq 4k$.

- 8. ACF of the process $X_t = Z_t + 0.5Z_{t-4}$ is
 - (a) $\rho(0) = 1$, $\rho(\pm 4) = 0.5^4$, $\rho(\tau) = 0$ otherwise.
 - (b) $\rho(0) = 1$, $\rho(\pm 4) = 0.5$, $\rho(\tau) = 0$ otherwise.
 - (c) $\rho(0) = 1$, $\rho(\pm 4) = 0.25$, $\rho(\tau) = 0$ otherwise.
 - (d) $\rho(0) = 1$, $\rho(\pm 4) = 0.4$, $\rho(\tau) = 0$ otherwise.
- 9. A time series X_t has the following ACF

$$\begin{split} \rho(12j) &= 0.8^{j} \\ \rho(12j \pm 1) &= 0.4 \times 0.8^{j} \text{ for } j = 0, \pm 1, \pm 2, \dots \\ \rho(\tau) &= 0 \text{ otherwise} \end{split}$$

Which of the following models it could be the ACF of?

- (a) $X_t + 0.8X_{t-12} = Z_t 0.5Z_{t-1}$.
- (b) $X_t 0.5X_{t-12} = Z_t + 0.8Z_{t-1}$.
- (c) $X_t 0.8X_{t-12} = Z_t + 0.4Z_{t-1}$.
- (d) $X_t 0.8X_{t-12} = Z_t + 0.5Z_{t-1}$.
- 10. The process $(1 B^7)(1 B)X_t = (1 + 0.9B^7)(1 + 0.5B)Z_t$ is
 - (a) $ARIMA(0,0,1) \times (1,1,1)_7$.
 - (b) $ARIMA(0,1,0) \times (1,1,1)_7$.
 - (c) $ARIMA(1, 1, 1) \times (1, 1, 1)_7$.
 - (d) $ARIMA(0,1,1) \times (0,1,1)_7$.