

The data have a wavy pattern. However, they do not show any seasonality. There seem to be an increasing variability at the higher levels of the observations.

A power transformation (Box-Cox transformation performed in Minitab) stabilizes the variance.

DiffX: the differenced data represent the monthly changes in the transformed (by square root) numbers of sunspots. DiffX series looks stationary with zero mean.

Autocorrelation Function: DiffX

Lag	ACF	T	LBQ
1	-0.294591	-4.55	21.00
2	-0.086777	-1.24	22.83
3	-0.069790	-0.99	24.02
4	0.086939	1.23	25.87
5	0.062427	0.88	26.83
6	-0.095245	-1.33	29.08

Partial Autocorrelation Function: DiffX

Lag	PACF	T
1	-0.294591	-4.55
2	-0.190054	-2.94
3	-0.177453	-2.74
4	-0.016479	-0.25
5	0.067342	1.04
6	-0.048177	-0.74

The sample ACF and PACF suggest an MA(1) model because the ACF cuts off at lag 1 and the PACF tails off. Also, $\hat{\rho}(1)$ is negative and all the significant sample PACF values are negative - this supports the choice of $M A(1)$ with a negative estimate of θ.

The model parameter θ is statistically significant ($\mathrm{p}<0.000$), $\hat{\theta}=-0.4341$ (note that Minitab is using Box and Jenkins' (1976) notation for MA(1), that is $\left.X_{t}=Z_{t}-\theta Z_{t-1}\right)$.

Hence, the MA(1) model is $\tilde{X}_{t}=Z_{t}-0.4341 Z_{t-1}$, where \tilde{X}_{t} denotes the transformed and differenced series, Z_{t} denotes a white noise.

The residuals look like Gaussian White Noise
Also, the Box-Pierce (Ljung-Box) Chi-Square statistics show that the residuals of this model (in groups of up to 48 values) are uncorrelated.

MA(1) fits well the transformed and differenced sunspots data.
Another model, such as $\operatorname{AR}(3)$ might also be considered.

6.1.2 Recife Data

Monthly average temperature in Recife in Celsius in years 1953-62. The temperature varies between about $23-28$ degrees C.
The warmest months are December-March and least warm are June-August.
There is clear seasonality in the data and not very clear, perhaps slightly upward, trend.
Unusual pattern occurred in the eighth year of the recorded data.
The linear trend fit shows a small increase in temperature over the years.

The detrended data exhibit seasonality but no trend, the 12 forecasted values repeat the pattern of the seasonal effects.

The seasonally adjusted and detrended data seem to be correlated with a few unusual values reflecting the pattern in the eighth year of the recorded data.

The sample ACF and PACF suggest an ARMA process. Trying various models we have obtained a reasonable fit with ARMA $(1,1)$:

$$
X_{t}-\varphi X_{t-1}=Z_{t}+\vartheta Z_{t-1}, \quad Z_{t} \sim W N\left(0, \sigma^{2}\right)
$$

Below are given plots of the detrended and deseasonalised data and their 12 forecasted values. Also, there are diagnostic plots for checking the white noise assumptions of the ARMA $(1,1)$ model. As we can see the assumptions are approximately met.

Here is the plot of the original data and the 12 added forecasted values.

The numerical Minitab output:

