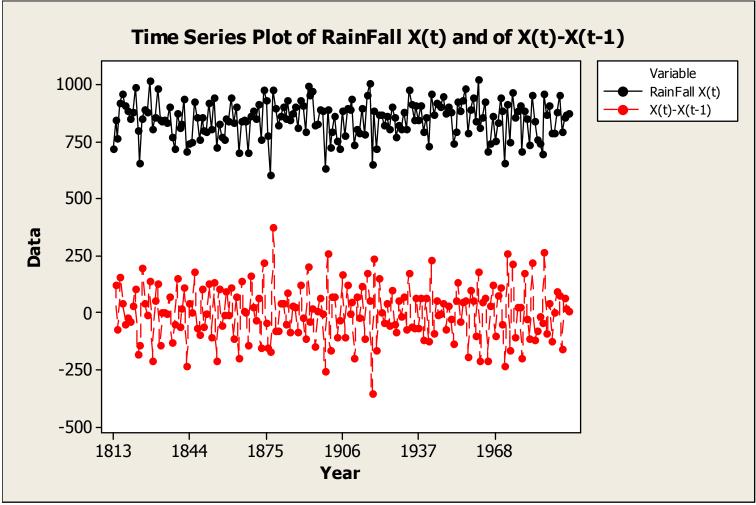
3.1 India Monsoon Data



- the data X t show some local increasing or decreasing trends
- the variability of the data looks constant
- there are some exceptional years of very low rainfall or very high rainfall
- the detrended data by the difference method give a new series Y_t = X_t X_{t-1} which represents difference in rainfall of two consecutive years (positive indicates increase, negative indicates decrease in rainfall compared to the previous year)
- the new series oscillates about zero, local trends are removed
- the variance seems to be constant



- The sample ACF of the changes in rainfall data cuts off after lag 1 and the rest of the values "randomly" oscillate about zero. This suggests an MA(1) model.
- The sample autocorrelation at lag 1 is negative, equal to -0.54. It means that the moving average parameter θ is negative as

$$\rho(1) = \frac{\theta}{1 + \theta^2}$$

The **ARIMA**(0,0,1) \equiv **MA**(1) option in Minitab gives the following output:

Final Estimates of Parameters

 Type
 Coef
 SE Coef
 T
 P

 MA
 1
 0.9980
 0.0000
 32278.19
 0.000

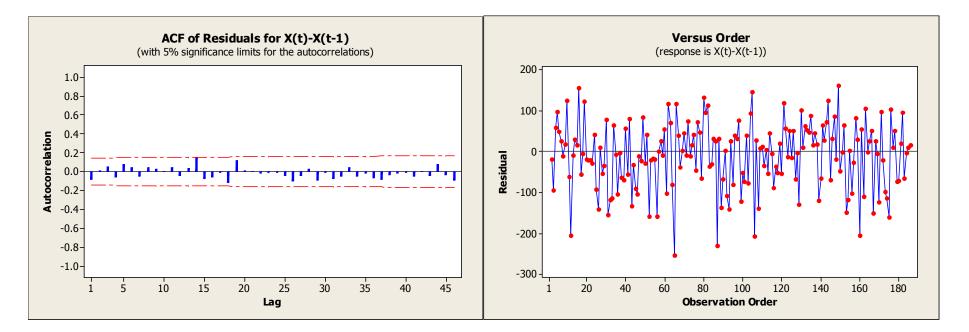
Here the estimate of coefficient θ is positive – this is because Minitab uses - θ in place of θ in our notation.

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

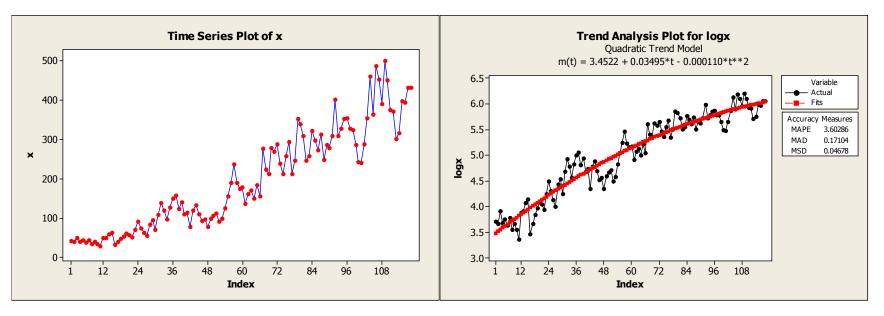
Lag	12	24	36	48
Chi-Square	5.6	18.3	27.3	36.1
DF	11	23	35	47
P-Value	0.900	0.740	0.821	0.875

The T-test tells us about the significance of the MA parameter θ while the Ljung-Box Q (LBQ) statistic tests the null hypothesis that the autocorrelations of the residuals for all lags up to lag k are equal to zero.

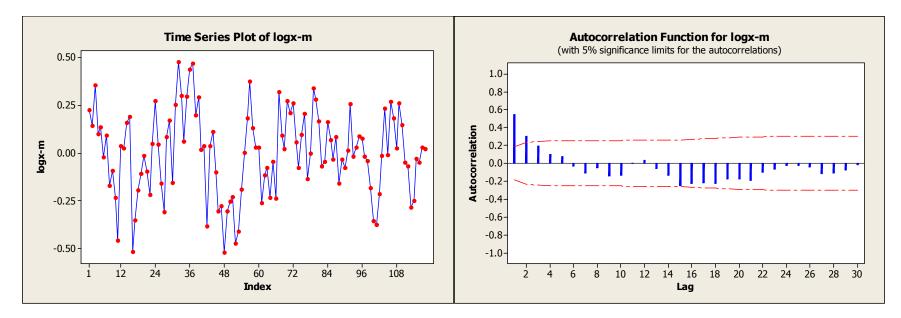
The results indicate that MA(1): $y_t = z_t - 0.998 z_{t-1}$, where z_t is the realization of $Z_t \sim WN(0,\sigma^2)$ and y_t is the differenced series $x_t - x_{t-1}$, fits the data well. The two graphs below confirm the numerical results about the White Noise Z_t , which looks like a stationary, uncorrelated series.



3.2 Boston Crime Data



- There is an increasing trend and also increasing variability in the data.
- A transformation is necessary for stabilizing the variance.
- The log transformed data do not show an increasing variability.
- The quadratic model fits the trend m(t) well.



• The detrended data are scattered about zero, but there are some local trends, which suggest possible correlations.

ARIMA(1,0,1) ≡ ARMA(1,1) model fit gives the following output:

Final Estimates of Parameters

SE Coef Ρ Coef Т Type 3.97 0.5566 0.1401 0.000 AR 1 MΑ 1 0.0095 0.1686 0.06 0.955

This means that the AR parameter is significantly different from zero, while the MA parameter is not. An AR(1) might be a better choice than ARMA(1,1).

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag	12	24	36	48
Chi-Square	11.6	22.0	36.7	49.7
DF	10	22	34	46
P-Value	0.314	0.457	0.343	0.328

The LBQ statistics show that the residuals might indeed be the required white noise values. The p-values are too large to reject the hypotheses of non-significant correlations of groups of residuals.

• The sample ACF indicates an AR or an ARMA model.

ARIMA(1,0,0) = AR(1) model fit gives the following output:

Final Estimates of Parameters

 Type
 Coef
 SE Coef
 T
 P

 AR
 1
 0.5499
 0.0772
 7.13
 0.000

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag	12	24	36	48
Chi-Square	11.5	22.1	36.7	49.6
DF	11	23	35	47
P-Value	0.399	0.515	0.388	0.369

The AR(1) model fit indicates a highly significant parameter φ with its estimate $\hat{\varphi} = 0.5499$.

The LBQ statistics, the graphs of the sample ACF and the plot of the residuals versus order indicate stationary uncorrelated series.

The model fit is $y_t = 0.5499 y_{t-1} + z_t$, where z_t is the realization of a WN($0,\sigma^2$).

