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6.3.3 Parameter Estimation

In this section we will discuss methods of parameter estimation for ARMA(p,q)
assuming that the ordersp andq are known.

Method of Moments

In this method we equate the population moments with the sample moments to
obtain a set of equations whose solution gives the required estimators. For ex-
ample, the first population moment isµ1 = E(X) and its sample counterpart is
m1 = X̄. This immediately gives

µ̂1 = X̄.

The method of moments gives good estimators for AR models butless efficient
estimators for MA or ARMA processes. Hence we will present the method for
AR time series. As usual we denote an AR(p) model by

Xt = φ1Xt−1 + . . . + φpXt−p + Zt.

This is a zero-mean model, but the estimation of the mean is straightforward and
we will not discuss it further. Here we use the difference equations, where we
replace the population autocovariance (central moment of order two) with the
sample autocovariance. The firstp + 1 difference equations are

γ(0) = φ1γ(1) + . . . + φpγ(p) + σ2

γ(τ) = φ1γ(τ − 1) + . . . + φpγ(τ − p), τ = 1, 2, . . . , p.

Note, thatq = 0, so the sum on the right hand side of (6.15) is zero.

In matrix notation we can write

σ2 = γ(0) − φTγp

Γpφ = γp

where
Γp = {γ(i − j)}i,j=1,...,p

φ = (φ1, . . . , φp)
T

γp = (γ(1), . . . , γ(p))T.

Replacingγ(τ) by the sample ACVF

γ̂(τ) =
1

n

n−τ∑

t=1

(Xt+τ − X̄)(Xt − X̄)
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we obtain the solution
σ̂2 = γ̂(0) − γ̂T

p Γ̂
−1

p γ̂p

φ̂ = Γ̂
−1

p γ̂p.
(6.34)

These equations are calledYule-Walker estimators. They are often expressed in
terms of autocorrelation function rather than autocovariance function. Then we
have

σ̂2 = γ̂(0)
(
1 − ρ̂T

p R̂−1

p ρ̂p

)

φ̂ = R̂−1

p ρ̂p,
(6.35)

where
R̂p = {ρ̂(i − j)}i,j=1,2,...,p

is the matrix of the sample autocorrelations and

ρ̂p = (ρ̂(1), . . . , ρ̂(p))T

is the vector of sample autocorrelations.

Proposition 6.3. The distribution of the Yule-Walker estimators φ̂ of the model
parameters of a causal AR(p) process

Xt = φ1Xt−1 + . . . + φpXt−p + Zt.

is asymptotically (as n −→ ∞) normal, in the sense that

√
n(φ̂ − φ)

d−→ N (0, σ2
Γ
−1

p ),

and
σ̂2

p−→ σ2.

Remark 6.12. Note that the matrix equation (6.22) is of the same form as (6.35).
Hence, we can use the Durbin-Lewinson algorithm to calculate the estimates. This
will give us the values of the sample PACF as well as the estimates ofφ.

Proposition 6.4. The distribution of the sample PACF of a causal AR(p) process
is asymptotically normal, that is

√
nφ̂ττ

d−→ N (0, 1) for τ > p.

Example 6.8. Consider an AR(2) zero-mean causal process

Xt = φ1Xt−1 + φ2Xt−2 + Zt.
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Then the Yule-Walker estimators are

σ̂2 = γ̂(0)
(
1 − ρ̂T

2 R̂−1

2 ρ̂2

)

φ̂ = R̂−1

2 ρ̂2,

where

R̂2 =

(
ρ̂(0) ρ̂(1)
ρ̂(1) ρ̂(0)

)

and
ρ̂2 = (ρ̂(1), ρ̂(2))T

φ̂ = (φ̂1, φ̂2)
T.

We can easily invert a2× 2 matrix and calculate the estimators, or we can use the
Durbin-Levinson algorithm directly to obtain

φ̂11 = ρ̂(1) =
φ̂1

1 − φ̂2

φ̂22 =
ρ̂(2) − ρ̂2(1)

1 − ρ̂2(1)
= φ̂2

φ̂21 = ρ̂(1)[1 − φ̂22] = φ̂1.

Also, we get

σ̂2 = γ(0)

[

1 − (ρ̂(1), ρ̂(2))

(
φ̂1

φ̂2

)]

= γ(0)[1 − (ρ̂(1)φ̂1 + ρ̂(2)φ̂2)]

Furthermore, from Proposition 6.3 we can derive the confidence interval forφi.
The proposition says that

√
n(φ̂ − φ)

d−→ N (0, σ2
Γ
−1

p ),

that is the variance of
√

n(φ̂i−φi) is the i-th diagonal element of the matrixσ2
Γ
−1
p ,

sayvii,
vii = var[

√
n(φ̂i − φi)] = n var(φ̂i − φi) = n var(φ̂i).

Hence,

var(φ̂i) =
1

n
vii

and the confidence interval is
[

φ̂i − uα

√
1

n
vii, φ̂i + uα

√
1

n
vii

]

.
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To calculate the confidence interval for a given data set we replacevii by its esti-
matev̂ii.

Also, from Proposition 6.4 we have

√
nφ̂ττ

d−→ N (0, 1) for τ > p,

that is
var(

√
nφ̂ττ ) −→ 1 for τ > p.

This gives the asymptotic result

var(φ̂ττ ) −→
1

n
.

However, we know that the PACF forτ > p is zero. It means that with probability
1 − α we have

−uα <
φ̂ττ − 0√

1

n

< uα.

It can be interpreted that the estimate of the PACF indicatesa non-significant value
of φττ if it is in the interval

[−uα/
√

n, uα/
√

n].

Then, the interval
[φ̂ττ − uα/

√
n, φ̂ττ + uα/

√
n].

covers zero.

We will do the calculations for the simulated AR(2) process given in Figure 6.2.
For these data we have the following values of the sample varianceγ̂(0) and the
sample autocorrelationŝρ(1) andρ̂(2)

γ̂(0) = 1.947669

ρ̂(1) = 0.66018

ρ̂(2) = 0.33751.

Then, matrixR̂2 is equal to

R̂2 =

(
1 0.66018

0.66018 1

)

and its inverse is

R̂−1

2 =

(
1.77254 −1.17020

−1.17020 1.77254

)
.
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Hence, we obtain the following Yule-Walker estimates of themodel parameters
(

φ̂1

φ̂2

)

=

(
1.77254 −1.17020

−1.17020 1.77254

)(
0.66018
0.33751

)
=

(
0.775243

−0.174290

)

The estimate of the white noise variance is

σ̂2 = 1.947669[1− (0.66018× 0.775243+ 0.33751× (−0.174290))] = 1.06542.

The series was simulated forφ1 = 0.7 andφ2 = −0.1 and a Gaussian White Noise
with zero mean and variance equal to 1. These estimates are not far from the true
values. Had we not known the true values we would have liked tocalculate the
confidence intervals for them. There are 200 observations, i.e. n = 200, which is
big enough to use the asymptotic result given in the Proposition 6.3. To calculate
vii note that

Γ = γ(0)R,

which gives

Γ
−1 =

1

γ(0)
R−1.

Hence

σ̂2
Γ̂
−1 = σ̂2

1

γ̂(0)
R̂−1

=
1.06542

1.947669

(
1.77254 −1.17020

−1.17020 1.77254

)

=

(
0.969623 −0.640129

−0.640129 0.969623

)

and we obtain the estimate of the variance of the parameter estimators

var(φ̂i) =
1

n
vii =

1

200
0.969623 = 0.0048481.

The 95% approximate confidence intervals for the model parametersφ1 andφ2

are, respectively

[0.775243 − 1.96 ×
√

0.0048481, 0.775243 + 1.96 ×
√

0.0048481]

= [0.638771, 0.911714]

[−0.17429 − 1.96 ×
√

0.0048481, −0.17429 + 1.96 ×
√

0.0048481]

= [−0.310761, −0.037818]
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Maximum Likelihood Estimation

The method of Maximum Likelihood Estimation applies to any ARMA(p,q) model

Xt − φ1Xt−1 − . . . − φpXt−p = Zt + θ1Zt−1 + . . . + θqZt−q.

This method requires an assumption on the distribution of the random variable
X = (X1, . . . , Xn)T. The usual assumption is that the process is Gaussian. Let
us denote the p.d.f. ofX by

fX(X1, . . . , Xn; β, σ2),

where
β = (φ1, . . . , φp, θ1, . . . , θq)

T.

Given the values ofX the p.d.f. becomes a function of the parameters. It is then
denoted by

L(β, σ2|x1, . . . , xn)

and for the Gaussian process it is

L(β, σ2|x1, . . . , xn) =
1√

(2π)n det(Γn)
exp

{
−1

2
XT

Γ
−1

n X

}
.

A more convenient form can be obtained after taking natural logarithm. Then

l(β, σ2|x1, . . . , xn) = ln L(β, σ2|x1, . . . , xn)

= −n

2
ln(2π) − 1

2
ln det(Γn) − 1

2
XT

Γ
−1

n X.

The Maximum likelihood Estimates are the values ofβ andσ2 which maximize
the functionl(β, σ2|x1, . . . , xn). Intuitively, a maximum likelihood estimate is the
parameter value for which the observed sample is most likely.

The estimates are usually found numerically using some iterative numerical opti-
mization routines. We will not discuss them here.

The MLE have the property of being asymptotically normally distributed. It is
stated in the following proposition.

Proposition 6.5.The distribution of the MLE β̂ of a causal and invertible ARMA(p,q)
process is asymptotically normal in the sense that

√
n(β̂ − β)

d−→ N(0, σ2
Γ
−1

p+q), (6.36)

where the (p + q) × (p + q)-dimensional matrix Γp+q depends on the model pa-
rameters.
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Some Specific Asymptotic Distributions

AR(1): Xt + φXt−1 = Zt

φ̂ ∼ AN
[
φ,

1

n
(1 − φ2)

]

AR(2): Xt + φ1Xt−1 + φ2Xt−2 = Zt

(
φ̂1

φ̂2

)

∼ AN
[(

φ1

φ2

)
,
1

n

(
1 − φ2

2 −φ1(1 + φ2)
−φ1(1 + φ2) 1 − φ2

2

)]

MA(1): Xt = Zt + θZt−1

θ̂ ∼ AN
[
θ,

1

n
(1 − θ2)

]

MA(2): Xt = Zt + θ1Zt−1 + θ2Zt−2

(
θ̂1

θ̂2

)
∼ AN

[(
θ1

θ2

)
,
1

n

(
1 − θ2

2 −θ1(1 + θ2)
−θ1(1 + θ2) 1 − θ2

2

)]

ARMA(1,1): Xt − φXt−1 = Zt + θZt−1

(
φ̂

θ̂

)

∼ AN
[(

φ
θ

)
,

1 + φθ

n(φ + θ)2

(
(1 − φ2)(1 + φθ) −(1 − θ2)(1 − φ2)
−(1 − θ2)(1 − φ2) (1 − θ2)(1 + φθ)

)]

Using these results we can construct approximate confidenceintervals for the
model parameters as in the method of moments.


