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6.3 Forecasting ARMA processes

The purpose of forecasting is to predict future values of a TSbased on the data
collected to the present. In this section we will discuss a linear function of
X = (Xn, Xn−1, . . . , X1)

T predicting a future value ofXn+m for m = 1, 2, . . ..

We call a function

f(n)(X) = β0 + β1Xn + . . . + βnX1 = β0 +
n∑

i=1

βiXn+1−i

thebest linear predictor (BLP) of Xn+m if it minimizes the prediction error

S(β) = E[Xn+m − f(n)(X)]2,

whereβ is the vector of the coefficientsβi and X is the vector of variables
Xn+1−i.

SinceS(β) is a quadratic function ofβ and is bounded below by zero there is at
least one value ofβ that minimizesS(β). It satisfies the equations

∂S(β)

∂βi

= 0, i = 0, 1, . . . , n.

Evaluation of the derivatives gives so calledprediction equations

∂S(β)

∂β0

= E[Xn+m − β0 −

n∑

i=1

βiXn+1−i] = 0 (6.18)

∂S(β)

∂βj

= E[(Xn+m − β0 −

n∑

i=1

βiXn+1−i)Xn+1−j] = 0 (6.19)

Assuming thatE(Xt) = µ the first equation can be written as

µ − β0 −
n∑

i=1

βiµ = 0,

which gives

β0 = µ(1 −
n∑

i=1

βi).
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The set of equations (6.20) gives

0 = E(Xn+mXn+1−j) − β0µ −

n∑

i=1

βi E(Xn+1−iXn+1−j)

= E(Xn+mXn+1−j) − µ2(1 −

n∑

i=1

βi) −
n∑

i=1

βi E(Xn+1−iXn+1−j)

= γ(m − (1 − j)) −
n∑

i=1

βiγ(i − j)

That is we obtain the following form of the prediction equations (6.20).

γ(m − 1 + j) =
n∑

i=1

βiγ(i − j), j = 1, . . . , n. (6.20)

We obtain the same set of equations whenE(Xt) = 0. Hence, we assume further
that the TS is a zero-mean stationary process. Thenβ0 = 0 too.

6.3.1 One-step-ahead Prediction

Given{X1, . . . , Xn} we want to forecast the value ofXn+1. The BLP ofXn+1 is

f(n) =
n∑

i=1

βiXn+1−i.

The coefficientsβi satisfy (6.21), wherem = 1, that is

n∑

i=1

βiγ(i − j) = γ(j), j = 1, 2, . . . , n.

A convenient way of writing these equations is using matrix notation. We have

Γnβn = γn, (6.21)

where
Γn = {γ(i − j)}j,i=1,2,...,n

βn = (β1, . . . , βn)T

γn = (γ(1), . . . , γ(n))T.

If Γn is nonsingular than the unique solution to (6.22) exists andis equal to

βn = Γ
−1
n γn. (6.22)
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Then the forecast ofXn+1 based onX = (Xn, . . . , X1)
T can be written as

X
(n)
n+1 = (Γ−1

n γn)TX. (6.23)

The mean square one-step-ahead prediction error denoted byP
(n)
n+1 is

P
(n)
n+1 = E(Xn+1 − X

(n)
n+1)

2

= E(Xn+1 − γT
n Γ

−1
n X)2

= E(X2
n+1 − 2γT

n Γ
−1
n XXn+1 + γT

n Γ
−1
n XXT

Γ
−1
n γn)

= γ(0) − 2γT
n Γ

−1
n γn + γT

n Γ
−1
n ΓnΓ

−1
n γn

= γ(0) − γT
n Γ

−1
n γn.

(6.24)

Example 6.6. Prediction for an AR(2)

Let

Xt = φ1Xt−1 + φ2Xt−2 + Zt

be a causal AR(2) process. Suppose we have one observation ofX1. Then one-
step-ahead prediction function is

f(1) = β1X1,

where

β1 = Γ−1
1 γ1 =

γ(1)

γ(0)
= ρ(1) = φ11

and we obtain

X
(1)
2 = ρ(1)X1 = φ11X1.

To predictX3 based onX2 andX1 we need to calculateβ1 andβ2 in the prediction
function

f(2) = β1X2 + β2X1.
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These can be obtained from (6.23) as
(

β1

β2

)
=

(
γ(0) γ(1)
γ(1) γ(0)

)
−1 (

γ(1)
γ(2)

)

=
1

γ2(0) − γ2(1)

(
γ(0) −γ(1)
−γ(1) γ(0)

)(
γ(1)
γ(2)

)

=
1

γ2(0) − γ2(1)

(
γ(0)γ(1) − γ(1)γ(2)
−γ2(1) + γ(0)γ(2)

)

=





γ(1)(γ(0)−γ(2))
γ2(0)−γ2(1)

γ(0)γ(2)−γ2(1)
γ2(0)−γ2(1)



 =





ρ(1)(1−ρ(2))
1−ρ2(1)

ρ(2)−ρ2(1)
1−ρ2(1)



 .

From the difference equations (6.17) calculated in Example6.4 we know that

ρ(1) =
φ1

1 − φ2

ρ(2) − φ1ρ(1) − φ2ρ(0) = 0

That is
ρ(2) = φ1ρ(1) + φ2.

It finally gives (
β1

β2

)
=

(
φ1

φ2

)
.

In fact, we can obtain this result directly from the model taking

X
(2)
3 = φ1X2 + φ2X1

which satisfies the prediction equations, namely

E[(X3 − φ1X2 − φ2X1)X1] = E[Z3X1] = 0

E[(X3 − φ1X2 − φ2X1)X2] = E[Z3X2] = 0.

In general, forn ≥ 2, we have

X
(n)
n+1 = φ1Xn + φ2Xn−1, (6.25)

i.e.,βj = 0 for j = 3, . . . , n.



126 CHAPTER 6. ARMA MODELS

Similarly, it can be shown that a one-step-ahead predictionfor AR(p) is

X
(n)
n+1 = φ1Xn + φ2Xn−1 + . . . + φpXn−p+1, for n ≥ p. (6.26)

Remark 6.8. An interesting connection between the PACF and vectorβn is that
in fact φnn = βn, the last element of the vector. For this reason, the vectorβn is
usually denoted byφn in the following way

βn =





β1

β2
...

βn




=





φn1

φn2
...

φnn




= φn.

The prediction equation (6.22) for a general ARMA(p,q) modelis more difficult
to calculate, particularly for large values ofn when we would have to calculate an
inverse of matrixΓn of large dimension. Hence some recursive solutions to cal-
culate the predictor (6.24) and the mean square error (6.25)were proposed, one of
them by Levinson in 1947 and by Durbin in 1960.

The method is known as theDurbin-Levinson Algorithm. Its steps are follow-
ing:

Step 1 Putφ00 = 0, P
(0)
1 = γ(0).

Step 2 Forn ≥ 1 calculate

φnn =
ρ(n) −

∑n−1
k=1 φn−1,kρ(n − k)

1 −
∑n−1

k=1 φn−1,kρ(k)
(6.27)

where, forn ≥ 2

φnk = φn−1,k − φnnφn−1,n−k, k = 1, 2, . . . , n − 1.

Step 3 Forn ≥ 1 calculate

P
(n)
n+1 = P (n−1)

n (1 − φ2
nn). (6.28)

Remark 6.9. Note, that the Durbin-Levinson algorithm gives an iterative method
to calculate the PACF of a stationary process.
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Remark 6.10. When we predict a value of the TS based only on one preceding
datum, that isn = 1, we obtain

φ11 = ρ(1),

and hence the predictorX(1)
2 = ρ(1)X1, or in general

X
(1)
n+1 = ρ(1)Xn

and its mean square error

P
(1)
2 = γ(0)(1 − φ2

11).

When we predictXn+1 based on two preceding values, that isn = 2, we obtain

φ22 =
ρ(2) − φ11ρ(1)

1 − φ11ρ(1)
=

ρ(2) − ρ2(1)

1 − ρ2(1)

which we have also obtained solving the matrix equation (6.22) for β2,

φ21 = φ11 − φ22φ11 = ρ(1)(1 − φ22).

Then the predictor is

X
(2)
n+1 = φ21Xn + φ22Xn−1

and its mean square error

P
(2)
3 = γ(0)(1 − φ2

11)(1 − φ2
22).

We could continue these steps forn = 3, 4, . . ..

Example 6.7. Prediction for an AR(2), continued
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Using the Durbin-Levinson algorithm for AR(2) we obtain

φ11 = ρ(1) =
φ1

1 − φ2

φ22 =
ρ(2) − ρ2(1)

1 − ρ2(1)
= φ2

φ21 = ρ(1)(1 − φ22) = φ1

φ33 =
ρ(3) − φ1ρ(2) − φ2ρ(1)

1 − φ1ρ(1) − φ2ρ(2)
= 0

φ31 = φ21 − φ33φ22 = φ1

φ32 = φ22 − φ33φ21 = φ2

φ44 =
ρ(4) − φ1ρ(3) − φ2ρ(2)

1 − φ1ρ(1) − φ2ρ(2)
= 0

The results forφ33 andφ44 come from the fact that in the numerator we have the
difference which is zero (difference equation).

Hence, one-step-ahead predictor for AR(2) is based only on two preceding values,
as there are only two nonzero coefficients in the prediction function. As before,
we obtain the result

X
(2)
n+1 = φ1Xn + φ2Xn−1.

Remark 6.11. The PACF for AR(2) is

φ11 =
φ1

1 − φ2

φ22 = φ2

φττ = 0 for τ ≥ 3.

(6.29)

6.3.2 m-step-ahead Prediction

Given values of variables{X1, . . . , Xn} them-steps-ahead predictor is

X
(n)
n+m = φ

(m)
n1 Xn + φ

(m)
n2 Xn−1 + . . . + φ(m)

nn X1, (6.30)
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whereφ
(m)
nj = βj satisfy the prediction equations (6.21). In matrix notation the

prediction equations are
Γnφ

(m)
n = γ(m)

n , (6.31)

where
γ(m)

n = (γ(m), γ(m + 1), . . . , γ(m + n − 1))T

and
φ(m)

n = (φ
(m)
n1 , φ

(m)
n2 , . . . , φ(m)

nn )T.

The mean square m-step-ahead prediction error is

P
(n)
n+m = E[Xn+m − X

(n)
n+m]2 = γ(0) − (γ(m)

n )T
Γ

−1
n γ(m)

n . (6.32)

The mean square prediction error assesses the precision of the forecast and it is
used to calculate so calledprediction interval (PI). When the process is Gaussian
the the PI is

X̂
(n)
n+m ± uα

√
P̂

(n)
n+m, (6.33)

whereuα is such thatP (|U | < uα) = 1 − α, whereU is a standard normal r.v.
Forα = 0.5 we haveuα ≈ 1.96 and the95% prediction interval boundaries are

(
X̂

(n)
n+m − 1.96

√
P̂

(n)
n+m, X̂

(n)
n+m + 1.96

√
P̂

(n)
n+m

)
.

Here we have used the “hat” notation as usually we do not know the values of the
model parameters and we have to use their estimators. We willdiscuss the model
parameter estimation in the next section.


