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6.2.2 PACF of ARMA(p,q)

We have seen earlier that the autocorrelation function of(¢ylAnodels is zero
for all lags greater thag as these areg-correlated processes. Hence, the ACF is a
good indication of the order of the process. However AR(jg) ARMA(p,q) pro-
cesses are “fully” correlated, their ACF tails off and nelsecomes zero, though

it may be very close to zero. In such cases it is difficult tonidg the process on
the ACF basis only.

In this section we will consider another correlation fuantiwhich together with
the ACF will help to identify the models. The function is edlPartial Autocor-
relation Function (PACF). Before introducing a formal definition of PACF we
motivate the idea for AR(1). Let

X=X 1+ 2
be a causal AR(1) process. Then

7(2) = cov(Xy, Xio)
= cov(pXi1 + Zy, Xi—2)
= cov(¢*Xi—o + ¢ Zy—1 + Z1, Xy—2)
=E[(¢°Xi—2 + ¢Zi1 + Z;) Xi—)]
= ¢*7(0).
The autocorrelation is not zero becausedepends onX;_, throughX; ;. Due

to the iterative kind of AR models there is a chain of deperdenVe can break
this dependence removing the influenceXoef ; from both X, and X;_, to obtain

X —0Xe1 and X,y — X,
for which the covariance is zero, i.e.,
COV(Xt - ¢Xt71, Xio — Qﬁthl) = COV(ZthJ - Qﬁthl) = 0.

Similarly, we obtain zero covariance fof;, and X;_; after breaking the chain
of dependence, i.e. removing the dependence of the twoblesi@n.X; ; and
X9, le. for Xy — f(X;1, Xy 0) and X;_3 — f(X;_1, X;_o) for some func-
tion f. Continuing this we would obtain zero covariances for \aga X; —

f( X, Xyo, oo, Xyrn) and X, — f(Xio1, Xy—9,...,Xi—711). Then the
only nonzero covariance is fof, and X, _; (nothing in between to break the chain
of dependence). These covariances with an appropriatédantdivided by the
variance of the process are the partial autocorrelatioesckl, for a causal AR(1)
process we would have the PACF at lag 1 equaltg and at lags> 1 equal to 0.
This, together with the tailing off shape of the ACF idensftae process.
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Definition 6.2. The Partial Autocorrelation Function (PACF) of a zero-mesa-
tionary TS{X;}:—o1.... is defined as

gooo

¢11 = corr(Xq, Xo) = p(1)

6.17
(bTT = COI"I'(XT - f(T—1)7X0 - f(T—1)>7 T > 27 ( )

where
f(T*l) - f(XT—17 cee 7X1)
minimizes the mean square linear prediction error
E(XT - f(T*l))2'

Remark6.4. The subscript at th¢ function denotes the number of variables the
function depends on.

Remark6.5. By stationarity,. is the correlation between variabl&s and X, .
with the linear effect

J(Xic, o X)) = B X+ B X

on each variable removed.

Example6.5. The PACF of AR(1)

Consider a process
Xi=0¢X, 1+ Ziy, Zi~WN(0,0%),
where|¢| < 1, i.e., a causal AR(1). Then by definition 6.2
¢ = p(l) = ¢.

To calculatep,, we need to find the functiofy;) which is of the form

fay = BX;.
We choose’ to minimize

E(X, — 8X))* = BE(X3 — 28X, X, + 32X7})
=7(0) = 267(1) + 3°~(0)

which is a polynomial in3. Taking the derivative with respect tband setting it
equal to zero, we obtain

—2y(1) + 29(0)8 = 0.
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Hence 0
Y
= 77— h(1) =
8 ) p(l) =¢
and
fa)y = ¢X1.
Then

gbgg = COI"I'(XQ — ¢X17 XQ - ¢X1) = COI"I"(ZQ, XQ - ¢X1) =0

as by causalityX, X; do not depend ow,. Similarly we would obtainps; = 0.
In fact
¢, =0 forr>1.

The PACF of AR(p)

Let
Xi— i Xe 1 — oo — 0 Xy p =21, Zy ~WM(0,0%)

be a causal AR(p) process, i.e., we assume that the rogts:phire outside the
unit circle. Whenr > p the linear combination minimizing the mean square linear
prediction error is

p
foy =Y 65X
j=1

We will discuss this result later. Now we will use it to obtaive PACF forr > p,
namely
¢TT = COH"(XT — f(p), XO — f(p))
= corr(Zy, Xo — fip)) =0

as by causalityX ._;, do not depend on the future noise valtie

Whent <p ¢,, # 0 andey, . .., ¢,_1,-1 are not necessarily zero.

Remark6.6. The PACF of MA(Q)
Let
Xe=Zi+0Zia+...+0,Zy, Zi~WN(0,0%)

be an invertible MA(q) process, i.e., rootséit) lie outside the unit circle. Then
its linear representation is

Xt = — ZWJXt—J + Zt'

J=1
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Figure 6.3: AR(2) for various values of the parametgers 0.9, —0.9,0.5, —0.5.
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Figure 6.4: ACF and PACF of the AR(1) process= 0.9z, 1 + 2.
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Figure 6.5: ACF and PACF of the AR(1) process= —0.9x;_1 + z.
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Figure 6.6: ACF and PACF of the AR(1) process= 0.5x;_1 + 2.
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Figure 6.7: ACF and PACF of the AR(1) process= —0.5x;_1 + 2.
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Figure 6.8: The PACF for AR(2), — 0.72,_1 + 0.12,_5 = 2.
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Figure 6.9: ACF and PACF of the MA(1) process= z; + 0.9z;_;.
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This is an AR¢o) representation(= oo) and the PACF will never cut off as for
the AR(p) with finitep.

The PACF of MA models behaves like ACF for AR models and PACFAR
models behaves like ACF for MA models.

It can be shown that PACF of MA(1) is

(=0)"(1 —6%)

¢TT:—W7 7-2 1

Remark6.7. The PACF of ARMA(p,q)
An invertible ARMA model has an infinite AR representatioenibe the PACF
will not cut off.

The following table summarizes the behaviour of the PACHefdausal and in-
vertible ARMA models (see R.H.Shumway and Stoffer (2000)).

AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts off after lag g Tails off
PACF Cuts off after lag p Tails off Tails off




