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6.2.2 PACF of ARMA(p,q)

We have seen earlier that the autocorrelation function of MA(q) models is zero
for all lags greater thanq as these areq-correlated processes. Hence, the ACF is a
good indication of the order of the process. However AR(p) and ARMA(p,q) pro-
cesses are “fully” correlated, their ACF tails off and neverbecomes zero, though
it may be very close to zero. In such cases it is difficult to identify the process on
the ACF basis only.

In this section we will consider another correlation function, which together with
the ACF will help to identify the models. The function is calledPartial Autocor-
relation Function (PACF). Before introducing a formal definition of PACF we
motivate the idea for AR(1). Let

Xt = φXt−1 + Zt

be a causal AR(1) process. Then

γ(2) = cov(Xt, Xt−2)

= cov(φXt−1 + Zt, Xt−2)

= cov(φ2Xt−2 + φZt−1 + Zt, Xt−2)

= E[(φ2Xt−2 + φZt−1 + Zt)Xt−2]

= φ2γ(0).

The autocorrelation is not zero becauseXt depends onXt−2 throughXt−1. Due
to the iterative kind of AR models there is a chain of dependence. We can break
this dependence removing the influence ofXt−1 from bothXt andXt−2 to obtain

Xt − φXt−1 andXt−2 − φXt−1

for which the covariance is zero, i.e.,

cov(Xt − φXt−1, Xt−2 − φXt−1) = cov(Zt, Xt−2 − φXt−1) = 0.

Similarly, we obtain zero covariance forXt andXt−3 after breaking the chain
of dependence, i.e. removing the dependence of the two variables onXt−1 and
Xt−2, i.e. for Xt − f(Xt−1, Xt−2) and Xt−3 − f(Xt−1, Xt−2) for some func-
tion f . Continuing this we would obtain zero covariances for variables Xt −
f(Xt−1, Xt−2, . . . , Xt−τ+1) and Xt−τ − f(Xt−1, Xt−2, . . . , Xt−τ+1). Then the
only nonzero covariance is forXt andXt−1 (nothing in between to break the chain
of dependence). These covariances with an appropriate function f divided by the
variance of the process are the partial autocorrelations. Hence, for a causal AR(1)
process we would have the PACF at lag 1 equal toρ(1) and at lags> 1 equal to 0.
This, together with the tailing off shape of the ACF identifies the process.
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Definition 6.2. The Partial Autocorrelation Function (PACF) of a zero-meansta-
tionary TS{Xt}t=0,1,... is defined as

φ11 = corr(X1, X0) = ρ(1)

φττ = corr(Xτ − f(τ−1), X0 − f(τ−1)), τ ≥ 2,
(6.17)

where
f(τ−1) = f(Xτ−1, . . . , X1)

minimizes the mean square linear prediction error

E(Xτ − f(τ−1))
2.

Remark6.4. The subscript at thef function denotes the number of variables the
function depends on.

Remark6.5. By stationarity,φττ is the correlation between variablesXt andXt−τ

with the linear effect

f(Xt−1, . . . , Xt−τ+1) = β1Xt−1 + . . . + βτ−1Xt−τ+1

on each variable removed.

Example6.5. The PACF of AR(1)

Consider a process

Xt = φXt−1 + Zt, Zt ∼ WN(0, σ2),

where|φ| < 1, i.e., a causal AR(1). Then by definition 6.2

φ11 = ρ(1) = φ.

To calculateφ22 we need to find the functionf(1) which is of the form

f(1) = βX1.

We chooseβ to minimize

E(X2 − βX1)
2 = E(X2

2 − 2βX1X2 + β2X2
1 )

= γ(0) − 2βγ(1) + β2γ(0)

which is a polynomial inβ. Taking the derivative with respect toβ and setting it
equal to zero, we obtain

−2γ(1) + 2γ(0)β = 0.
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Hence

β =
γ(1)

γ(0)
= ρ(1) = φ

and
f(1) = φX1.

Then

φ22 = corr(X2 − φX1, X0 − φX1) = corr(Z2, X0 − φX1) = 0

as by causalityX0, X1 do not depend onZ2. Similarly we would obtainφ33 = 0.
In fact

φττ = 0 for τ > 1.

The PACF of AR(p)

Let
Xt − φ1Xt−1 − . . . − φpXt−p = Zt, Zt ∼ WM(0, σ2)

be a causal AR(p) process, i.e., we assume that the roots ofφ(z) are outside the
unit circle. Whenτ > p the linear combination minimizing the mean square linear
prediction error is

f(p) =

p∑

j=1

φjXτ−j.

We will discuss this result later. Now we will use it to obtainthe PACF forτ > p,
namely

φττ = corr(Xτ − f(p), X0 − f(p))

= corr(Zτ , X0 − f(p)) = 0

as by causalityXτ−j, do not depend on the future noise valueZτ .

Whenτ ≤ p φpp 6= 0 andφ11, . . . , φp−1,p−1 are not necessarily zero.

Remark6.6. The PACF of MA(q)
Let

Xt = Zt + θ1Zt−1 + . . . + θqZt−q, Zt ∼ WN(0, σ2)

be an invertible MA(q) process, i.e., roots ofθ(z) lie outside the unit circle. Then
its linear representation is

Xt = −
∞∑

j=1

πjXt−j + Zt.
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Figure 6.3: AR(1) for various values of the parametersφ = 0.9,−0.9, 0.5,−0.5.
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Figure 6.4: ACF and PACF of the AR(1) processxt = 0.9xt−1 + zt.
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Figure 6.5: ACF and PACF of the AR(1) processxt = −0.9xt−1 + zt.
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Figure 6.6: ACF and PACF of the AR(1) processxt = 0.5xt−1 + zt.
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Figure 6.7: ACF and PACF of the AR(1) processxt = −0.5xt−1 + zt.
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Figure 6.8: The PACF for AR(2)xt − 0.7xt−1 + 0.1xt−2 = zt.

10 30 50 70 90

-5

-3

-1

1

3

MA(1) 

t

Lag

AC
F

0 5 10 15

-0.
2

0.0
0.2

0.4
0.6

0.8
1.0

 Series : MA1$theta09

Lag

Pa
rtia

l A
CF

0 5 10 15

-0.
2

0.0
0.2

0.4

 Series : MA1$theta09

Figure 6.9: ACF and PACF of the MA(1) processxt = zt + 0.9zt−1.
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This is an AR(∞) representation (p = ∞) and the PACF will never cut off as for
the AR(p) with finitep.

The PACF of MA models behaves like ACF for AR models and PACF for AR
models behaves like ACF for MA models.

It can be shown that PACF of MA(1) is

φττ = −
(−θ)τ (1 − θ2)

1 − θ2(τ+1)
, τ ≥ 1.

Remark6.7. The PACF of ARMA(p,q)
An invertible ARMA model has an infinite AR representation, hence the PACF
will not cut off.

The following table summarizes the behaviour of the PACF of the causal and in-
vertible ARMA models (see R.H.Shumway and Stoffer (2000)).

AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off


