Chapter 5

Estimation of the Mean and the
ACVF

A stationary proces$.X,} is characterized by its mean and its autocovariance
function v(-), and so by the autocorrelation functigf-). In this chapter we
present the estimators of these statistics obtained fr@argations ofX, . . ., X,

and discuss their properties.

5.1 Estimation of the Mean

Denote by
X =(Xy,..., X",

ann-dimensional random vector each of whose components istmnawariable
with expectation.;, that is

EX:IJ’: (Mla"'?:un)T7

and whose variance-covariance matrix has the form

var(Xy)  cov(Xy, Xo) ... cov(Xy, X))
cov(Xy, X1)  var(Xy) ... cov(Xe, X))
cov(X,, X1) cov(X,,Xs) ... var(X,)

If {X,} is a stationary process then
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and the variance covariance matrix simplifies to

7(0) (1) Y(=n+1)
(1) 7(0) Y(=n+2)
V= .
yn—=1) y(n—-2) 7(0)

The mean of a process is not always zero and its estimatiorpisrtant for further
inference. The moment estimator of the meanf a stationary process is the
sample mean

X,=b"X,
where
1 1\*
b:<_,...,_) ,
n n
X =(Xy,.... X"
That is

It is an unbiased estimator since

E(b'X) = b E(X)
= bTIJ,

1
“1....0 =
n(, A i

The mean square error af, is

E(X, — pu)? = var(X,).
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Using the matrix notation we can write (see Remark 3.2)

var(X,,) = var(b* X)

=b'Vb
w0) (=1 Wt 1)\ /g
RERA W a0 Y +2)
Yn—1) ~(n—2) +(0) !
—— S =)
:% ] <1—%)7(7)
<=3 i)
|T|<n

Now, if y(n) — 0 asn — oo then the right hand side converges to zero. It
means thaf\,, converges tq. in the mean square sense.

If the series is Gaussian, then by the Remark 3.3, we haveotineatity of X,

X, ~ N (b, bTVb).

That is we can write

where

UZZ( —%)7(7).

|T|<n
Then a confidence interval farcan be obtained so as
X, —p

Vorrs

P(—u, < <uy)=1-—a,

what can be rearranged to

P<Xn—ua\/§<,u<Xn+ua\/§) =1—a.
n n
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Hereu, is such thatP(|U| < u,) = 1 — a andU = X2=£ ~ A(0,1). For

v/n

a = 0.05 we haveu, = 1.96 and the confidence interval boundaries are

<Xn — 1.96\/2 X, + 1.96\/§> ,
n n

This results are obtained assuming thas known. In practice, usually it is not
the case and we need to estimatdo estimate the covariance(r) is replaced
with 7(7) ando is calculated as

ﬂ

Example5.1 Let {X,} be an AR(1) process with mean defined by
Xy —p=(Xoo1 — pp) + Zy,

where|¢| < 1 andZ, ~ W N(0, 0?). For this process we have

@l
V(1) = 1_7&
Hence, taking
v=Y_ 77
|7]<oo

we obtain the result

2

_ o? Ir| _ o? & s\ 0
u_1_¢22¢ _1_¢2<—1+2;¢>_(1_¢)2.

|7|<o0

In this case we need to know# and¢ to obtainuv or their estimates to obtaih

5.2 Estimation of ACVF and ACF

Definition 4.3 gives the following estimators fotr) andp(7), respectively

k—|7|

30 = 1 3 (K- X)X~ X, —k<r<k (1)

where



5.2. ESTIMATION OF ACVF AND ACF 95

and

~ (7)
o)==, —k<71<k. (5.2)
") 7(0)
Both estimators are biased, however for for lakgiae bias is small. The ACVF
has the property that tHedimensional sample covariance matrix

50) A1 . qk-1)
| W0 -2
Sk=1) Ak-2) .. F0)

IS nonnegative definite. To show it means to show that
aT‘Afka >0

for anyk-dimensional real vectaz. This can be easily obtained if we can express
the matrixV" as the following product

- 1
Vk, — ECCT,

for some matrixC. Take vector rvsX = (Xi,...,X;)T andY = (X, —
Xl; e ,Xk — Xk)T Then

0O ... 0 0 Y1 Yy ... Y,
C— O .. 0 WY, .Y O
0O Y9 Y, ... Y% 0 ... 0

It is easy to see that multiplying' by CT we obtain a matrix of sums of squares
and products o¥; which when divided byt is theV;, matrix. Hence,

aT‘Afka = aT%CCTa
1
= E(aTC)(CTa) > 0.

Hence, due to the Theorem 4ylr) is an autocovariance function of a stationary
process as it is nonnegative definite and even.

We will be using the forms 5.1 and 5.2 as the estimators foAtB€F and ACF.
The estimates of(7) are good ifr << n, wheren is the total number of obser-
vations. Forr close ton there are too few pairgX;, X, ) for the estimate to be
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reliable. Box and Jenkins (1976) suggest thahould be at least 50 and< n /4.

For statistical inference based on thie’) we need to know its distribution. For
large sample size it can be approximated by a normal disioibu For linear
models the vector

p=(p(1),....pk)"

is approximately distributed as

p ~ N(p,lW), (5.3)

approx n

where
p=(p(1),....p(k)"
andW is the variance-covariance matrix

W = {w;}, (5.4)

wherew;; is given by Bartlett's formula

wij = Y [plk+1) + plk — i) — 2p(i) p(k)][p(k + 5) + p(k — ) — 2p(j)p(k)].

Example5.2 Let{X,} ~ I1D(0,0?). Thenp(r) = 0 for all = > 0 and from 5.4

we obtain
1 ifi=
Yii =3 0 otherwise

Then by (5.3) the estimatofg) are approximately independent and identically
distributed as
1
3] ~ N([(O,—].
p(T) approx ( ’ n)

This gives us the confidence bounds f¢r) of an 11D process, which are

(—ta/Vn, ua/V/n),

whereu,, is such thatP(|U| < u,) = 1 — «, whereU ~ N(0,1). Fora = 0.05
we haveu, ~ 1.96 and the95% confidence interval boundaries are

(=1.96/v/n, 1.96//n).
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Example 5.3. Consider MA(1) process
Xt:Zt+QZt_1, t:O,j:]_,jZQ,...,
where{Z;} ~ WN(0,0?). Then from equation (5.4) we obtain

1—3p%(1) +4p*(1), fi=1
Wi T 1+ 202(0), if i > 1.

Then by (5.3) we get the confidence interval fot ), namely

(ﬁ(l) - u\/ L= 320+ 454(1), A1) +ua\/ L(1-32(1) +4ﬁ4(1))> .

(5.5)
We know that forr > 1 the true value of the ACF is zero, hence as a kind of test
we can calculate the interval in which the obtained sampligegaof the ACF are
not significant. This is

(—ua\/%(1+2,62(1)), ua\/%(1+2,62(1))>, (5.6)

Now, takef) = 0.5 as in Example 4.3. Then the theoretical valug(@f) is

0 0.5

1 = V— =
P =175 = 135

0.4.

From the simulation we obtained
p(1) = 0.4763
and so thé5% confidence interval is approximated be
(0.4763 — 1.96 - 0.0724762, 0.4763 + 1.96 - 0.0724762)
= (0.334247, 0.618353)
which includes the theoretical value @fl1). For lagr > 1 we have
(—1.96 - 0.12057, 1.96 - 0.12057)
= (—0.236318, 0.236318)

In fact the bounds are often calculated according to the ditarfor [ID noise,
which depends only on. Heren = 100 and we obtain

(—tta/ /1, Ua/v/n) = (—0.196, 0.196)

Figure 4.4 shows such boundaries and indeed all the samigecarelations for
lag 7 > 1 are within these boundaries. For lag= 1 we obtained the CI covering
the true value op(1). These two facts support the compatibility of the simulated
data with MA(1) model withd = 0.5.
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Example5.4. Consider AR(1) process
Xy =0 Xy 1+ Zy,
where{Z,} is ani.i.d. noise an¢ly| < 1. Then the theoretical ACF is given by
p(r) =¢l"l foranyr =0,+1,+2 .. ..

From the Bartlett’s formula (5.4) for the variances and c@araces ofp and the
form of p(7) for AR(1) we obtain

W =3 (O - Y T o7
k=1 k=1+1

=(1=¢")(1+¢")(1—¢")" — 279",

(5.7)

forr=1,2,...
Then, due to (5.3) the approximate confidence bounds canrbputed as

(6(7) = war/wre s p(7) + tar/wrr /) (5.8)
Take¢ = 0.5 as in the bottom plot of Figure 4.9. The sample ACF is given in

the Figure 4.10. Is this sample ACF compatible with AR(1) o= 0.5? What
conclusions can you draw from the figure below?
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Figure 5.1: Theoretical ACF, sample ACF and the Cl boundgHersimulated
AR(1) with ¢ = 0.5.



