
Chapter 5

Estimation of the Mean and the
ACVF

A stationary process{Xt} is characterized by its mean and its autocovariance
function γ(·), and so by the autocorrelation functionρ(·). In this chapter we
present the estimators of these statistics obtained from observations ofX1, . . . , Xn

and discuss their properties.

5.1 Estimation of the Mean

Denote by

X = (X1, . . . , Xn)T,

ann-dimensional random vector each of whose components is a random variable
with expectationµi, that is

E X = µ = (µ1, . . . , µn)
T,

and whose variance-covariance matrix has the form

V =





var(X1) cov(X1, X2) . . . cov(X1, Xn)
cov(X2, X1) var(X2) . . . cov(X2, Xn)

...
...

. . .
...

cov(Xn, X1) cov(Xn, X2) . . . var(Xn)





If {Xt} is a stationary process then

µ = (µ, . . . , µ)T = µ(1, . . . , 1)T
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and the variance covariance matrix simplifies to

V =





γ(0) γ(−1) . . . γ(−n + 1)
γ(1) γ(0) . . . γ(−n + 2)

...
...

. . .
...

γ(n − 1) γ(n − 2) . . . γ(0)





The mean of a process is not always zero and its estimation is important for further
inference. The moment estimator of the meanµ of a stationary process is the
sample mean

X̄n = bTX,

where

b =

(
1

n
, . . . ,

1

n

)T

,

X = (X1, . . . , Xn)T.

That is

X̄n =
1

n

n∑

i=1

Xi.

It is an unbiased estimator since

E(bTX) = bT E(X)

= bTµ

=
1

n
(1, . . . , 1)




µ
...
µ



 = µ.

The mean square error of̄Xn is

E(X̄n − µ)2 = var(X̄n).
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Using the matrix notation we can write (see Remark 3.2)

var(X̄n) = var(bTX)

= bTV b

=
1

n2
(1, . . . , 1)





γ(0) γ(−1) . . . γ(−n + 1)
γ(1) γ(0) . . . γ(−n + 2)

...
...

. . .
...

γ(n − 1) γ(n − 2) . . . γ(0)








1
...
1





=
1

n2

n−1∑

τ=−n+1

(n − |τ |)γ(τ)

=
1

n

n−1∑

τ=−n+1

(
1 − |τ |

n

)
γ(τ)

≤ 1

n

∑

|τ |<n

|γ(τ)|.

Now, if γ(n) −→ 0 asn −→ ∞ then the right hand side converges to zero. It
means that̄Xn converges toµ in the mean square sense.

If the series is Gaussian, then by the Remark 3.3, we have the normality of X̄n,

X̄n ∼ N (bTµ, bTV b).

That is we can write

X̄n ∼ N
(

µ,
1

n
v

)
,

where

v =
∑

|τ |<n

(
1 − |τ |

n

)
γ(τ).

Then a confidence interval forµ can be obtained so as

P (−uα <
X̄n − µ√

v/n
< uα) = 1 − α,

what can be rearranged to

P

(
X̄n − uα

√
v

n
< µ < X̄n + uα

√
v

n

)
= 1 − α.
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Hereuα is such thatP (|U | < uα) = 1 − α andU = X̄n−µ√
v/n

∼ N (0, 1). For

α = 0.05 we haveuα = 1.96 and the confidence interval boundaries are
(

X̄n − 1.96

√
v

n
, X̄n + 1.96

√
v

n

)
,

This results are obtained assuming thatv is known. In practice, usually it is not
the case and we need to estimatev. To estimatev the covarianceγ(τ) is replaced
with γ̂(τ) andv̂ is calculated as

v̂ =
∑

|τ |<n

(
1 − |τ |

n

)
γ̂(τ).

Example 5.1. Let {Xt} be an AR(1) process with meanµ, defined by

Xt − µ = φ(Xt−1 − µ) + Zt,

where|φ| < 1 andZt ∼ WN(0, σ2). For this process we have

γ(τ) =
φ|τ |σ2

1 − φ2
.

Hence, taking
v =

∑

|τ |<∞

γ(τ)

we obtain the result

v =
σ2

1 − φ2

∑

|τ |<∞

φ|τ | =
σ2

1 − φ2

(
−1 + 2

n∑

τ=0

φτ

)
=

σ2

(1 − φ)2
.

In this case we need to knowσ2 andφ to obtainv or their estimates to obtain̂v.

5.2 Estimation of ACVF and ACF

Definition 4.3 gives the following estimators forγ(τ) andρ(τ), respectively

γ̂(τ) =
1

k

k−|τ |∑

t=1

(Xt − X̄k)(Xt+|τ | − X̄k), −k < τ < k (5.1)

where

X̄k =
1

k

k∑

t=1

Xt.
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and

ρ̂(τ) =
γ̂(τ)

γ̂(0)
, −k < τ < k. (5.2)

Both estimators are biased, however for for largek the bias is small. The ACVF
has the property that thek-dimensional sample covariance matrix

V̂k =





γ̂(0) γ̂(−1) . . . γ̂(k − 1)
γ̂(1) γ̂(0) . . . γ̂(k − 2)

...
...

. . .
...

γ̂(k − 1) γ̂(k − 2) . . . γ̂(0)





is nonnegative definite. To show it means to show that

aTV̂ka ≥ 0

for anyk-dimensional real vectora. This can be easily obtained if we can express
the matrixV̂ as the following product

V̂k =
1

k
CCT,

for some matrixC. Take vector r.vsX = (X1, . . . , Xk)
T and Y = (X1 −

X̄1, . . . , Xk − X̄k)
T. Then

C =





0 . . . 0 0 Y1 Y2 . . . Yk

0 . . . 0 Y1 Y2 . . . Yk 0
...

...
0 Y1 Yn . . . Yk 0 . . . 0





It is easy to see that multiplyingC by CT we obtain a matrix of sums of squares
and products ofYi which when divided byk is theV̂k matrix. Hence,

aTV̂ka = aT
1

k
CCTa

=
1

k
(aTC)(CTa) ≥ 0.

Hence, due to the Theorem 4.1γ̂(τ) is an autocovariance function of a stationary
process as it is nonnegative definite and even.

We will be using the forms 5.1 and 5.2 as the estimators for theACVF and ACF.
The estimates ofρ(τ) are good ifτ << n, wheren is the total number of obser-
vations. Forτ close ton there are too few pairs(Xt, Xt+τ ) for the estimate to be
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reliable. Box and Jenkins (1976) suggest thatn should be at least 50 andτ ≤ n/4.

For statistical inference based on theρ̂(τ) we need to know its distribution. For
large sample size it can be approximated by a normal distribution. For linear
models the vector

ρ̂ = (ρ̂(1), . . . , ρ̂(k))T

is approximately distributed as

ρ̂ ∼
approx

N
(

ρ,
1

n
W

)
, (5.3)

where

ρ = (ρ(1), . . . , ρ(k))T

andW is the variance-covariance matrix

W = {wij}, (5.4)

wherewij is given by Bartlett’s formula

wij =
∞∑

k=1

[ρ(k + i) + ρ(k − i) − 2ρ(i)ρ(k)][ρ(k + j) + ρ(k − j) − 2ρ(j)ρ(k)].

Example 5.2. Let {Xt} ∼ IID(0, σ2). Thenρ(τ) = 0 for all τ > 0 and from 5.4
we obtain

wij =

{
1 if i = j
0 otherwise.

Then by (5.3) the estimatorŝρ(τ) are approximately independent and identically
distributed as

ρ̂(τ) ∼
approx

N

(
0,

1

n

)
.

This gives us the confidence bounds forρ(τ) of an IID process, which are

(−uα/
√

n, uα/
√

n),

whereuα is such thatP (|U | < uα) = 1 − α, whereU ∼ N (0, 1). Forα = 0.05
we haveuα ≈ 1.96 and the95% confidence interval boundaries are

(−1.96/
√

n, 1.96/
√

n).



5.2. ESTIMATION OF ACVF AND ACF 97

Example 5.3. Consider MA(1) process

Xt = Zt + θZt−1, t = 0,±1,±2, . . . ,

where{Zt} ∼ WN(0, σ2). Then from equation (5.4) we obtain

wii =

{
1 − 3ρ2(1) + 4ρ4(1), if i = 1
1 + 2ρ2(1), if i > 1.

Then by (5.3) we get the confidence interval forρ(1), namely
(

ρ̂(1) − uα

√
1

n
(1 − 3ρ̂2(1) + 4ρ̂4(1)), ρ̂(1) + uα

√
1

n
(1 − 3ρ̂2(1) + 4ρ̂4(1))

)
.

(5.5)
We know that forτ > 1 the true value of the ACF is zero, hence as a kind of test
we can calculate the interval in which the obtained sample values of the ACF are
not significant. This is

(

−uα

√
1

n
(1 + 2ρ̂2(1)), uα

√
1

n
(1 + 2ρ̂2(1))

)

, (5.6)

Now, takeθ = 0.5 as in Example 4.3. Then the theoretical value ofρ(1) is

ρ(1) =
θ

1 + θ2
=

0.5

1.25
= 0.4.

From the simulation we obtained

ρ̂(1) = 0.4763

and so the95% confidence interval is approximated be

(0.4763 − 1.96 · 0.0724762, 0.4763 + 1.96 · 0.0724762)

= (0.334247, 0.618353)

which includes the theoretical value ofρ(1). For lagτ > 1 we have

(−1.96 · 0.12057, 1.96 · 0.12057)

= (−0.236318, 0.236318)

In fact the bounds are often calculated according to the formula for IID noise,
which depends only onn. Heren = 100 and we obtain

(−uα/
√

n, uα/
√

n) = (−0.196, 0.196)

Figure 4.4 shows such boundaries and indeed all the sample autocorrelations for
lag τ > 1 are within these boundaries. For lagτ = 1 we obtained the CI covering
the true value ofρ(1). These two facts support the compatibility of the simulated
data with MA(1) model withθ = 0.5.
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Example 5.4. Consider AR(1) process

Xt = φXt−1 + Zt,

where{Zt} is an i.i.d. noise and|φ| < 1. Then the theoretical ACF is given by

ρ(τ) = φ|τ | for any τ = 0,±1,±2, . . . .

From the Bartlett’s formula (5.4) for the variances and covariances ofρ and the
form of ρ(τ) for AR(1) we obtain

wττ =

τ∑

k=1

φ2τ (φ−k − φk)2 +

∞∑

k=τ+1

φ2k(φ−τ − φτ )2

= (1 − φ2τ )(1 + φ2)(1 − φ2)−1 − 2τφ2τ ,

(5.7)

for τ = 1, 2, . . ..

Then, due to (5.3) the approximate confidence bounds can be computed as
(
ρ̂(τ) − uα

√
wττ/n, ρ̂(τ) + uα

√
wττ/n

)
. (5.8)

Takeφ = 0.5 as in the bottom plot of Figure 4.9. The sample ACF is given in
the Figure 4.10. Is this sample ACF compatible with AR(1) forφ = 0.5? What
conclusions can you draw from the figure below?
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Figure 5.1: Theoretical ACF, sample ACF and the CI bounds forthe simulated
AR(1) with φ = 0.5.


