4.2 Strict Stationarity

A more restrictive definition of stationarity involves all the multivariate distributions of the subsets of TS r.vs.

Definition 4.4. A time series $\{X_t\}$ is called strictly stationary if the random vectors $(X_{t_1}, \ldots, X_{t_n})^{\mathrm{T}}$ and $(X_{t_1+\tau}, \ldots, X_{t_n+\tau})^{\mathrm{T}}$ have the same joint distribution for all sets of indices $\{t_1, \ldots, t_n\}$ and for all integers τ and n > 0. It is written as

 $(X_{t_1},\ldots,X_{t_n})^{\mathrm{T}} \stackrel{d}{=} (X_{t_1+\tau},\ldots,X_{t_n+\tau})^{\mathrm{T}},$

where $\stackrel{d}{=}$ means "equal in distribution".

Properties of a Strictly Stationary TS

- 1. The r.vs X_t are identically distributed for all t. Follows from the definition for n = 1.
- 2. Pairs of r.vs $(X_t, X_{t+\tau})^T$ are identically distributed for all t and τ . That is,

$$(X_t, X_{t+\tau})^{\mathrm{T}} \stackrel{d}{=} (X_1, X_{1+\tau})^{\mathrm{T}}.$$

Follows from the definition for n = 2.

- 3. X_t is a weakly stationary TS if $E(X_t^2) < \infty$ for all t. By (1) $E X_t$ is constant, does not depend on t. If $E(X_t^2) < \infty$ then all covariances also exist (by Cauchy-Schwarz inequality). By (2) $\gamma(\tau) = cov(X_t, X_{t+\tau}) = cov(X_1, X_{1+\tau})$, which also does not depend on t.
- 4. Weak stationarity does not imply strict stationarity. To prove this property we show an example of a weakly stationary TS which is not strictly stationary. Let $Z_t \sim_{iid} \mathcal{N}(0, 1)$. Define

$$X_t = \begin{cases} Z_t, & \text{if } t \text{ is even} \\ \frac{1}{\sqrt{2}}(Z_{t-1}^2 - 1) & \text{if } t \text{ is odd.} \end{cases}$$

Then

$$E X_t = \begin{cases} E Z_t = 0, & \text{if } t \text{ is even} \\ E \left[\frac{1}{\sqrt{2}} (Z_{t-1}^2 - 1) \right] = \frac{1}{\sqrt{2}} E[Z_{t-1}^2 - 1] = 0 & \text{if } t \text{ is odd.} \end{cases}$$

Also,

$$\operatorname{var}(X_t) = \begin{cases} \operatorname{var}(Z_t) = 1, & \text{if } t \text{ is even,} \\ \operatorname{var}(\frac{1}{\sqrt{2}}(Z_{t-1}^2 - 1)) = \frac{1}{2}\operatorname{var}(Z_{t-1}^2) = 1 & \text{if } t \text{ is odd,} \end{cases}$$

4.2. STRICT STATIONARITY

and by part 2 of Theorem 3.2 we obtain

$$\operatorname{cov}(X_t, X_{t+\tau}) = 0.$$

Hence X_t is a weakly stationary TS, it is in fact WN(0, 1). Is it identically distributed? We will compare $P(X_t < x_t)$ for t even and odd. We have

$$P(X_t < x_t) = P(Z_t < x_t)$$
 for t even.

For t odd we get

$$P(X_t < x_t) = P\left(\frac{1}{\sqrt{2}}(Z_{t-1}^2 - 1) < x_t\right)$$

= $P\left(Z_{t-1}^2 < \sqrt{2}x_t + 1\right)$
= $P\left(-\sqrt{\sqrt{2}x_t + 1} < Z_{t-1} < \sqrt{\sqrt{2}x_t + 1}\right).$

Take x = 0. Then

$$P(X_t < 0) = \begin{cases} 0.5, & \text{if } t \text{ is even,} \\ 0.6826, & \text{if } t \text{ is odd.} \end{cases}$$

Hence the c.d.fs are different for t even and t odd, that is series X_t is not strictly stationary.

5. *An i.i.d. TS is strictly stationary.* For an i.i.d. TS the joint cdf is

$$P(X_{t_1+\tau} < x_1, \dots, X_{t_n+\tau} < x_n) = F(x_1) \cdot \dots \cdot F(x_n).$$

So, it does not depend on the choice of the indices $\{t_1, \ldots, t_n\}$.