
Chapter 4

Stationary TS Models

A time series is a sequence of random variables{Xt}t=1,2,..., hence it is natural to
ask about distributions of these r.vs. There may be an infinite number of r.vs, so
we consider multivariate distributions of random vectors,i.e. of finite subsets of
the sequence{Xt}t=1,2,....

Definition 4.1. We define atime series model for the observed data{xt} to be a
specification of all the joint distributions of the random vectorsX = (X1, . . . , Xn)

T,
n = 1, 2, . . . , of which{xt} are possible realizations, that is all the probabilities

P (X1 ≤ x1, . . . , Xn ≤ xn), −∞ < x1, . . . , xn < ∞, n = 1, 2, . . . .

�

Such a specification is rather impractical. Instead, we consider first and second-
order moments of the joint distributions, i.e.,

E(Xt) and E(Xt+τXt) for t = 1, 2, . . . , τ = 0, 1, 2, . . . .

and examine properties of the TS which depend on these. They are calledsecond-
order properties.

Remark4.1. For the multivariate normal joint distributions, the first and second
order moments completely determine the distributions. Hence for a TS having all
the joint distributions normal the second-order properties of TS give its complete
characterization (model).
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4.1 Weak Stationarity and Autocorrelation

For ann dimensional random vectorX we can calculate the variance-covariance
matrix. However, a TS usually involves a very large (infinitein theory) number of
r.vs. Then, there is a very large number of pairs of the variables and so we define
so calledautocovarianceas an extension of the variance-covariance matrix . It is
usually denoted by Greek letterγ and we write

γ(Xt+τ ,Xt) = cov(Xt+τ , Xt), for all indexest and lagsτ. (4.1)

Definition 4.2. A time series{Xt} is calledweakly stationary or just stationary
if

1. E Xt = µXt
= µ < ∞, that is the expectation ofXt is finite and does not

depend ont, and

2. γ(Xt+τ ,Xt) = γτ , that is for eachτ the autocovariance of r.vs(Xt+τ , Xt)
does not depend ont (it is constant for a given lagτ ).

�

Remark4.2. If {Xt} is a weakly stationary TS then the autocovarianceγ(Xt+τ ,Xt)

may be viewed as a function of one variableτ . It is calledautocovariance func-
tion (ACVF) and we often writeγX(τ) or justγ(τ) when it is clear which TS it
refers to.

Note that
γ(0) = var(Xt),

that is, the variance is constant for allt.

Remark4.3. Similarly, we define so calledautocorrelation function (ACF) as

ρX(τ) =
γX(τ)

γX(0)
= corr(Xt+τ , Xt) for all t, τ. (4.2)

Example4.1. i.i.d. noise
{Xt} is a sequence of r.vs which have no trend or seasonality and are indepen-
dently, identically distributed (i.i.d.). Then the joint c.d.f. can be written as

F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= P (X1 ≤ x1) . . . P (Xn ≤ xn)

= F (x1) . . . F (xn).
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So the conditional distribution ofXn+τ given values of(X1, . . . , Xn) is

P (Xn+τ ≤ x|X1 = x1, . . . , Xn = xn) = P (Xn+τ ≤ x).

It means that knowledge of the past has no value for predicting future.

{Xt} has zero trend, henceE Xt = 0. If E(X2
t ) = σ2 < ∞, then it has finite

variance and by the independence we get

γ(τ) =

{
σ2, if τ = 0,

0, if τ 6= 0.

This meets the requirements of Definition 4.2. Hence i.i.d. noise with finite sec-
ond moment is a weakly stationary process, usually denoted by

{Xt} ∼ IID(0, σ2).

�

Example4.2. White noise
A sequence{Xt} of uncorrelated r.vs, each with zero mean and varianceσ2 is
calledwhite noise. It is denoted by

{Xt} ∼ WN(0, σ2).

The name ‘white’ comes from the analogy with white light and indicates that all
possible periodic oscillations are present with equal strength.

A particularly useful white noise process is the Gaussian white noise series of iid
r.vs, which we denote by

{Xt} ∼
iid

N (0, σ2).

White noise meets the requirements of the definition of weak stationarity.
�

Remark4.4. Note that everyIID(0, σ2) series isWN(0, σ2), but not conversely.
In general uncorrelation does not imply independence. Gaussian white noise is
however anIID process.

Example4.3. MA(1) process
The series defined as the following combination of two neighbouring White Noise
variables

Xt = Zt + θZt−1, t = 0,±1,±2, . . . , (4.3)
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Figure 4.1: Simulated Gaussian White Noise Time Series

where

{Zt} ∼ WN(0, σ2),

andθ is a constant, is calledfirst order moving average, which we denote by
MA(1) .

Is the MA(1) a weakly stationary series?

From equation 4.3 we obtain

E(Xt) = E(Zt + θZt−1) = E(Zt) + θ E(Zt−1) = 0.

Now, we need to check if the autocovariance function does notdepend on time,
i.e., it depends only on lagτ .

cov(Xt, Xt+τ ) = cov(Zt + θZt−1, Zt+τ + θZt−1+τ )

= E[(Zt + θZt−1)(Zt+τ + θZt−1+τ )]

− E(Zt + θZt−1)
=0

E(Zt+τ + θZt−1+τ )
=0

= E(ZtZt+τ ) + θ E(ZtZt−1+τ ) + θ E(Zt−1Zt+τ ) + θ2 E(Zt−1Zt−1+τ ).
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Figure 4.2: Simulated MA(1) Time Series

Now, taking various values of the lagτ we obtain

cov(Xt, Xt+τ ) =






E(Z2
t ) + θ2 E(Z2

t−1) = (1 + θ2)σ2, if τ = 0,
θ E(Z2

t ) = θσ2, if τ = ±1,
0, if |τ | > 1.

(4.4)

Hence, the covariance does not depend ont and we can write the autocovariance
function of lagτ as

γX(τ) = cov(Xt, Xt+τ ) for any t.

So, the conclusion is that MA(1) is a weakly stationary process. Also, from (4.4)
we obtain the form of the autocorrelation function

ρX(τ) =






1, if τ = 0,
θ

1+θ2 if τ = ±1,

0, if |τ | > 1.
(4.5)

Figure 4.2 shows the MA(1) process obtained from the simulated white noise
takingθ = 0.5.

�

4.1.1 Sample Autocorrelation Function

The autocorrelation function is a helpful tool in assessingthe degree of depen-
dence and in recognizing what kind of model the TS follows. When we try to fit a
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Figure 4.3: Correlogram of the Simulated Gaussian White Noise Time Series

model to an observed TS we use so called sample autocorrelation function based
on the data. It is defined analogously to the ACF for a TS{Xt}.

Definition 4.3. Let x1, . . . , xn be observations of a TS. Thesample autocovari-
ance function is defined as

γ̂(τ) =
1

n

n−|τ |∑

t=1

(xt − x̄)(xt+|τ | − x̄), −n < τ < n (4.6)

where

x̄ =
1

n

n∑

t=1

xt.

Thesample autocorrelation function is defined as

ρ̂(τ) =
γ̂(τ)

γ̂(0)
, −n < τ < n. (4.7)

Remark4.5. For lagτ ≥ 0 the sample autocovariance function is approximately
equal to the sample covariance of then− τ pairs(x1, x1+τ ), . . . , (xn−τ , xn). Note
that, in (4.6), we divide the sum byn, not byn − τ and also we use the overall
meanx̄ for bothxt andxt+τ .
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Figure 4.4: Correlogram of the Simulated MA(1) Time Series

A graph of sample autocorrelation function is calledcorrelogram.

Figures 4.3 and 4.4, respectively, show the correlogram of the Gaussian white
noise time series given in Figure 4.1 and the correlogram of the MA(1) TS with
θ = 0.5 calculated from the white noise. As expected, there is no significant cor-
relation for lagτ ≥ 1 for the white noise, but there is one for the MA(1) for lag
τ = 1.

The role of ACF in prediction

Suppose that{Xt} is a stationary Gaussian TS and we have observedXn. We
would like to predict to predictXn+τ with high precision. The Mean Square Error
is a good measure of precision of the prediction,

MSE = E[Xn+τ − f(Xn+τ |Xn)]
2

and is minimized when the functionf is the conditional expectation ofXn+τ given
Xn,

f(Xn+τ |Xn) = E(Xn+τ |Xn).

For a Gaussian stationary TS we have, see (3.33),

E(Xn+τ |Xn = xn) = µn+τ + ρ(τ)σn+τσ
−1
n (xn − µn) = µ + ρ(τ)(xn − µ).
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Then, see (3.34),

MSE = var(Xn+τ |Xn = xn) = σ2(1 − ρ(τ)).

It shows that asρ −→ 1 the value of precision measureMSE −→ 0. The higher
is the correlation at lagτ the more precise is prediction ofXn+τ based on the
observedXn. Similar conclusions can be drawn for prediction ofXn+τ based on
the observedXn, Xn−1, . . .. We will come back to this problem later.

4.1.2 Properties of ACVF and ACF

First we examine some basic properties of the Autocovariance function (ACVF).

Proposition 4.1. The ACVF of a stationary TS is a functionγ(·) such that

1. γ(0) ≥ 0,

2. |γ(τ)| ≤ γ(0) for all τ ,

3. γ(·) is even, i.e.,
γ(τ) = γ(−τ), for all τ.

Proof. 1. Obvious, asγ(0) = var(Xt) ≥ 0.

2. From the definition of correlation (3.30) and stationarity of the TS we have

|γ(τ)| = |ρ(τ)|σ2,

whereσ2 = var(Xt). Also, |ρ(τ)| ≤ 1. Hence

|γ(τ)| = |ρ(τ)|σ2 ≤ σ2 = γ(0).

3. Here we have

γ(τ) = cov(Xt+τ , Xt) = cov(Xt, Xt+τ ) = γ(−τ).

�

Another important property of the ACVF is given by the following theorem.

Theorem 4.1.A real-valued function defined on the integers is the autocovariance
function of a stationary TS if and only if it is even and nonnegative definite.
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Proof. We say that a real-valued functionκ defined on integers is nonnegative
definite if

n∑

i,j=1

aiκ(i − j)aj ≥ 0 (4.8)

for all positive integersn and real-valued vectorsa = (a1, . . . , an)T.

It is easy to show that an ACVF is nonnegative definite and thisis what we do
below. Take vector r.v.X = (X1, . . . , Xn)T whose variance-covariance matrix
V is given by

V =





γ(0) γ(1 − 2) . . . γ(1 − n)
γ(2 − 1) γ(0) . . . γ(2 − n)

...
...

. . .
...

γ(n − 1) γ(n − 2) . . . γ(0)




.

Then, denotingZ = (X1 − E X1, . . . , Xn − E Xn)T, we can write

0 ≤ var(aT
X) = E[(aT

Z)(aT
Z)T]

= E[aT
ZZ

T
a]

= a
T
V a =

n∑

i,j=1

aiγ(i − j)aj .

Henceγ(τ) is a nonnegative definite function.
�


