Chapter 4

Stationary TS Models

gooo

ask about distributions of these r.vs. There may be an iafmitmber of r.vs, so
we consider multivariate distributions of random vectass, of finite subsets of

goos

Definition 4.1. We define dime series model for the observed datéz, } to be a

specification of all the joint distributions of the randontt@s X = (X1,..., X,,)7T,
n=1,2,...,of which{z;} are possible realizations, that is all the probabilities
P(X;<mz,...,. X, <z,), —00<xq,...,0, <00, n=12....
O

Such a specification is rather impractical. Instead, we idendirst and second-
order moments of the joint distributions, i.e.,

E(X;) and E(X,.,X;) fort=1,2,..., 7=0,1,2,....

and examine properties of the TS which depend on these. Thealedsecond-
order properties.

Remark4.1 For the multivariate normal joint distributions, the firstdasecond
order moments completely determine the distributions.dddar a TS having all
the joint distributions normal the second-order propsrtieTS give its complete
characterization (model).
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4.1 Weak Stationarity and Autocorrelation

For ann dimensional random vectoX we can calculate the variance-covariance
matrix. However, a TS usually involves a very large (infimitéheory) number of
r.vs. Then, there is a very large number of pairs of the véesgand so we define
so calledautocovarianceas an extension of the variance-covariance matrix . Itis
usually denoted by Greek letterand we write

V(Xpir,Xe) = covV(Xeyr, Xy), forallindexest and lagsr. (4.1)

Definition 4.2. A time serie§ X, } is calledweakly stationary or just stationary
if

1. EX; = ux, = p < oo, thatis the expectation of; is finite and does not
depend ort, and

2. Y(xiym,xy) = 7 thatis for eachr the autocovariance of rvgX, ., X;)
does not depend an(it is constant for a given lag). O

Remarkd.2 If {X,} is a weakly stationary TS then the autocovariafGe, . x,)
may be viewed as a function of one variabldt is calledautocovariance func-
tion (ACVF) and we often writeyx (7) or just(7) when it is clear which TS it
refers to.

Note that
7(0) = var(X,),

that is, the variance is constant for all

Remark4.3. Similarly, we define so calledutocorrelation function (ACF) as

px(T) = 7;((28 = corr(Xyy ., X;) forall ¢, 7. (4.2)

Exampled4.1 i.i.d. noise
{X.} is a sequence of r.vs which have no trend or seasonality anthéepen-
dently, identically distributed (i.i.d.). Then the jointdcf. can be written as

F(xla"'axn):P(Xllea---anSZL‘n)
= F(x1)...F(z,).
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So the conditional distribution oX,, ., given values of Xy, ..., X,,) is
P(Xpir <z|Xy=m1,..., X, =2,) = P(Xpyr < 2).
It means that knowledge of the past has no value for predictiture.

{X;} has zero trend, hende X; = 0. If E(X?) = ¢* < oo, then it has finite
variance and by the independence we get

(r) = o’ if r=0,
=Y 0 ifr4o0

This meets the requirements of Definition 4.2. Hence i.iais@with finite sec-
ond moment is a weakly stationary process, usually denoted b

{X;} ~ IID(0,07).

4

Exampled4.2 White noise
A sequence X;} of uncorrelated r.vs, each with zero mean and variarices
calledwhite noise It is denoted by

{X;} ~WN(0,0%).

The name ‘white’ comes from the analogy with white light andicates that all
possible periodic oscillations are present with equahsite

A patrticularly useful white noise process is the Gaussiaientoise series of iid
r.vs, which we denote by
{Xt} '\é N(O7 02)'

White noise meets the requirements of the definition of weatkomarity. 0

Remarkd.4. Note that every 1 D(0, 0%) series iSV N (0, o%), but not conversely.
In general uncorrelation does not imply independence. Sansvhite noise is
however an/ I D process.

Exampled4.3. MA(1) process
The series defined as the following combination of two neagiiimg White Noise
variables

X, =2Z,+0Z,_1, t=0,+1,42,..., (4.3)
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Figure 4.1: Simulated Gaussian White Noise Time Series
where

{Z,} ~WN(0,0%),

andd is a constant, is callefirst order moving average, which we denote by
MA(L).

Is the MA(1) a weakly stationary series?

From equation 4.3 we obtain
E(Xt) == E(Zt —|— Hthl) == E(Zt> + QE(Zt,1> == O

Now, we need to check if the autocovariance function doeslapéend on time,
i.e., it depends only on lag

COV(Xt, XtJrT) = COV(Zt + (9Zt,1, ZtJrT + 92t71+7-)
=E[(Zi +0Z1)(Ziir +0Z1-14+))]
—E(Z +0Z1)E(Ziyr +02,147)
=0 =0

=E(ZiZyr) + OE(ZiZi-147) + OE(Zi-1Z1ir) + P B(Z41 Zy-14r).
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Figure 4.2: Simulated MA(1) Time Series

Now, taking various values of the lagwe obtain
E(Z) + *E(Z2 ) = (1+6%)0?, if 7 =0,
COV(Xt,Xt+7—) = 9E(Z§) = 90'27 |f T = :l:l7 (44)
07 |f |’7" > 1.
Hence, the covariance does not depend and we can write the autocovariance
function of lagr as
vx(7) = cov(Xy, Xypr) for anyt.

So, the conclusion is that MA(1) is a weakly stationary pesceéAlso, from (4.4)
we obtain the form of the autocorrelation function

1, if 7=0,
px (1) = Hﬁ% if 7= =1, (4.5)
0, if |7] > 1.
Figure 4.2 shows the MA(1) process obtained from the siradlathite noise
takingd = 0.5. ]

4.1.1 Sample Autocorrelation Function

The autocorrelation function is a helpful tool in assesshydegree of depen-
dence and in recognizing what kind of model the TS follows.eéWiwve try to fit a
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Figure 4.3: Correlogram of the Simulated Gaussian Whitesél@ime Series

model to an observed TS we use so called sample autocoorefatiction based
on the data. It is defined analogously to the ACF for a{1S}.

Definition 4.3. Let x4, ..., z, be observations of a TS. Tlkemple autocovari-
ance function is defined as

n—|r|

) == (2 — ) (Xer — T), —n<T<n (4.6)

t=1
where
R
T = E Z Tt.
t=1
Thesample autocorrelation function is defined as

p(1) = &g), —n <7 <N 4.7)

Remark4.5. For lagr > 0 the sample autocovariance function is approximately
equal to the sample covariance of the 7 pairs(zy, z14+), ..., (Tn_r, z,). NOte
that, in (4.6), we divide the sum by, not byn — 7 and also we use the overall
meanz for bothx; andz,, ..
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Series : MA1$X
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Figure 4.4: Correlogram of the Simulated MA(1) Time Series

A graph of sample autocorrelation function is caltedrelogram.

Figures 4.3 and 4.4, respectively, show the correlogranhefGaussian white
noise time series given in Figure 4.1 and the correlogranh@MA(1) TS with

6 = 0.5 calculated from the white noise. As expected, there is noifssgnt cor-
relation for lagr > 1 for the white noise, but there is one for the MA(1) for lag
T=1.

The role of ACF in prediction

Suppose thaf X,} is a stationary Gaussian TS and we have obseXgd We
would like to predict to predick,,, . with high precision. The Mean Square Error
is a good measure of precision of the prediction,

MSE = E[XnJrq- - f(Xn+T|Xn)]2

and is minimized when the functighis the conditional expectation df,, , . given
Xn,
f(XnJrT‘Xn) = E(Xn+T|Xn)-

For a Gaussian stationary TS we have, see (3.33),

E(Xnir | Xn = 20) = fngr + p(T)Un-i—TU;l(xn — tn) = o+ p(7) (20 — ).
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Then, see (3.34),
MSE = var( X, +| X, = ,) = 0*(1 — p(7)).

It shows that ag — 1 the value of precision measuté SE — 0. The higher
is the correlation at lag the more precise is prediction of, ., based on the
observedX,,. Similar conclusions can be drawn for predictiongf, ., based on
the observed(,,, X,,_1,.... We will come back to this problem later.

4.1.2 Properties of ACVF and ACF

First we examine some basic properties of the Autocovagifumection (ACVF).
Proposition 4.1. The ACVF of a stationary TS is a functigft) such that

1. v(0) >0,

2. |v(7)| <~(0) forall 7,

3. y(-)iseven,i.e.,
v(1) =~(-7), forall 7.

Proof. 1. Obvious, ag/(0) = var(X;) > 0.

2. From the definition of correlation (3.30) and stationeoit the TS we have

V()] = lp(7)lo?,

wheres? = var(X;). Also, [p(7)| < 1. Hence
Y (7)] = |p(7)]o* < 0% = 7(0).
3. Here we have

Y(71) = cov(Xiqr, Xy) = cov( Xy, Xy r) = y(—7).

Another important property of the ACVF is given by the folliong theorem.

Theorem 4.1.A real-valued function defined on the integers is the autacance
function of a stationary TS if and only if it is even and noratage definite.
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Proof. We say that a real-valued functiondefined on integers is nonnegative
definite if

n

Z a;k(i—jla; >0 (4.8)

ij=1

for all positive integers: and real-valued vectois = (ay, ..., a,)".

It is easy to show that an ACVF is nonnegative definite andithishat we do

below. Take vector rvX = (X,...,X,)T whose variance-covariance matrix
V is given by
70)  A(1-=2) ... y(1—-n)
2—1 0 oo 2—n
yo| @ @ e
Y —1) y(n-2) ... (0

Then, denotingZ = (X, —E X;,..., X,, — EX,)T, we can write

0 <var(a’X) =E[(a*Z)(a*2)"]
=E[a"ZZ"a]

n

=a'Va= Z ay(i — j)aj.

1,j=1

Hencey(7) is a nonnegative definite function. 0



