
Chapter 3

Random Variables and Their
Distributions

A random variable (r.v.) is a function that assigns one and only one numerical
value to each simple event in an experiment.

We will denote r.vs by capital letters:X, Y or Z and their values by small letters:
x, y or z respectively.

There are two types of r.vs: discrete and continuous. Randomvariables that can
take a countable number of values are calleddiscrete. Random variables that take
values from an interval of real numbers are calledcontinuous.

Example 3.1Discrete r.v., Brockwell and Davis (2002)
Yearly results of the all-star baseball games over years 1933-1995, where

Xt =

{

1 if the National League won in yeart,

− 1 if the Americal League won in yeart.

In each of the realizations there is some probabilityp of Xt = 1 and probability
1 − p of Xt = −1.

�

Example 3.2Continuous r.v.
The r.vs in all the examples given in Chapter 1 are continuous.

�

33
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3.1 One Dimensional Random Variables

Definition 3.1. If E is an experiment having sample spaceS, andX is a function
that assigns a real numberX(e) to every outcomee ∈ S, thenX is called a
random variable.

�

Definition 3.2. LetX denote a r.v. andx its particular value from the whole range
of all values ofX, sayRX . The probability of the event(X ≤ x) expressed as a
function ofx:

FX(x) = PX(X ≤ x) (3.1)

is called thecumulative distribution function (c.d.f.) of the r.v.X.
�

Properties of cumulative distribution functions

• 0 ≤ FX(x) ≤ 1, −∞ < x < ∞

• limx→∞ FX(x) = 1

• limx→−∞ FX(x) = 0

• The function is nondecreasing. That is, ifx1 ≤ x2 thenFX(x1) ≤ FX(x2).

3.1.1 Discrete Random Variables

Values of a discrete r.v. are elements of a countable set{x1, x2, . . .}. We associate
a numberpX(xi) = PX(X = xi) with each valuexi, i = 1, 2, . . ., such that:

1. pX(xi) ≥ 0 for all i

2.
∑∞

i=1 pX(xi) = 1

Note that
FX(xi) = PX(X ≤ xi) =

∑

x≤xi

pX(x) (3.2)

pX(xi) = FX(xi) − FX(xi−1) (3.3)

The functionpX is called theprobability mass function of the random variable
X, and the collection of pairs

{(xi, pX(xi)), i = 1, 2, . . .} (3.4)



3.1. ONE DIMENSIONAL RANDOM VARIABLES 35

is called theprobability distribution of X. The distribution is usually presented
in either tabular, graphical or mathematical form.

Examples of known p.m.fs

Ex. 3.3 The Binomial Distribution (X denotesk successes inn independent tri-
als). The p.m.f. of a binomially distributed r.v.X with parametersn andp
is

P (X = k) =

(

n
k

)

pk(1 − p)n−k, k = 0, 1, 2, . . . , n,

wheren is a positive integer and0 ≤ p ≤ 1.
�

Ex. 3.4 The Uniform Distribution The p.m.f. of a r.v.X uniformly distributed
on{1, 2, . . . , n} is

P (X = k) =
1

n
, k = 1, 2, . . . , n,

wheren is a positive integer.
�

Ex. 3.5 The Poisson Distribution (X denotes a number of outcomes in a period
of time). The p.m.f. of a r.v.X having a Poisson distribution with parameter
λ > 0 is

P (X = k) =
λk

k!
e−λ.

�

Take as an example a r.v.X having the Binomial distribution:X ∼ Bin(8, 0.4).
That isn = 8 and the probability of successp = 0.4. The distribution, shown in a
mathematical, tabular and graphical way and a graph of the c.d.f. of the variable
X follow.
Mathematical form:

{(k, P (X = k) = nCkp
k(1 − p)n−k ), k = 0, 1, 2, . . . , 8} (3.5)

Tabular form:

k 0 1 2 3 4 5 6 7 8
P (X = k) 0.0168 0.0896 0.2090 0.2787 0.2322 0.1239 0.0413 0.0079 0.0007
P (X ≤ k) 0.0168 0.1064 0.3154 0.5941 0.8263 0.9502 0.9915 0.9993 1
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Figure 3.1: Graphical representation of the mass function and the cumulative dis-
tribution function forX ∼ Bin(8, 0.4)

Other important discrete distributions are:

• Bernoulli(p)

• Geometric(p)

• Hypogeomeric(n, M, N)

3.1.2 Continuous Random Variables

Values of a continuous r.v. are elements of an uncountable set, for example a real
interval. A c.d.f. of a continuous r.v. is a continuous, nondecreasing, differentiable
function. An interesting difference from a discrete r.v. isthat forδ > 0

PX(X = x) = limδ→0(FX(x + δ) − FX(x)) = 0.

We define theprobability density function (p.d.f.) of a continuous r.v. as:

fX(x) =
d

dx
FX(x) (3.6)

Hence

FX(x) =

∫ x

−∞

fX(t)dt (3.7)

Similarly to the properties of the probability distribution of a discrete r.v. we have
the following properties of the density function:

1. fX(x) ≥ 0 for all x ∈ RX

2.
∫

RX
fX(x)dx = 1
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Figure 3.2: Distribution Function and Cumulative Distribution Function for
N(4.5, 2)

Probability of an event(X ∈ A), whereA is an interval(−∞, a), is expressed as
an integral

PX(−∞ < X < a) =

∫ a

−∞

fX(x)dx = FX(a) (3.8)

or for a bounded interval(b, c)

PX(b < X < c) =

∫ c

b

fX(x)dx = FX(c) − FX(b). (3.9)

Examples of continuous r.vs

Ex. 3.6 The normal distribution N(µ, σ2)
The density function is given by

fX(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 . (3.10)

There are two parameters which tell us about the position andthe shape of
the density curve: the expected valueµ and the standard deviationσ.

�

Ex. 3.7 The uniform distribution U(a, b)
The p.d.f. of a r.v.X uniformly distributed on[a, b] is given by

fX(x) =







1

b − a
, if a ≤ x ≤ b,

0, otherwise.

�
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Figure 3.3: Distribution density function and cumulative distribution function for
Exp(1)

Ex. 3.8 The exponential distribution Exp(λ)
The p.d.f. of an exponentially distributed r.v.X with parameterλ > 0 is

fX(x) =

{

0, if x < 0,

λe−λx, if x ≥ 0.

The corresponding c.d.f. is

FX(x) =

{

0, if x < 0,

1 − e−λx, if x ≥ 0.

�

Ex. 3.9 The gamma distribution Gamma(α, λ) with parameters representing shape
(α) and scale (λ). The p.d.f. of a gamma distributed r.v.X is

fX(x) =

{

0, if x < 0,

xα−1λαeλx/Γ(α), if x ≥ 0,

where theα > 0, λ > 0 andΓ is the gamma function defined by

Γ(n) =

∫ ∞

0

xn−1e−xdx, for n > 0.

A recursive relationship that may be easily shown integrating the above
equation by parts is

Γ(n) = (n − 1)Γ(n − 1).

If n is a positive integer, then

Γ(n) = (n − 1)!

sinceΓ(1) = 1.
�
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Other important continuous distributions are

• The chi-squared distribution withν degrees of freedom,χ2
ν

• TheF distribution withν1, ν2 degrees of freedom,Fν1,ν2.

• Studentt-distribution withν degrees of freedom,tν .

These distributions are functions of normally distributedr.vs.

Note that all the distributions depend on some parameters, like p, λ, µ, σ or other.
These values are usually unknown, and so their estimation isone of the important
problems in statistical analyses.

3.1.3 Expectation

The expectation of a functiong of a r.v.X is defined by

E(g(X)) =



















∫ ∞

−∞

g(x)f(x)dx, for a continuous r.v.,

∞
∑

j=0

g(xj)p(xj) for a discrete r.v.,
(3.11)

andg is any function such thatE |g(X)| < ∞.

Two important special cases ofg are:

Mean E(X), also denoted byE X, wheng(X) = X,

Variance E(X − E X)2, wheng(X) = (X − E X)2. The following relation is
very useful while calculating the variance

E(X − E X)2 = E X2 − (E X)2. (3.12)

Example 3.10
Let X be a r.v. such that

f(x) =







1

2
sin x, for x ∈ [0, π],

0 otherwise.

Then the expectation and variance are following
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• Expectation

E X =
1

2

∫ π

0

x sin xdx =
π

2
.

• Variance
var(X) = E X2 − (E X)2

=
1

2

∫ π

0

x2 sin xdx −
(π

2

)2

=
π2

4
.

�

Example 3.11The Normal distribution,X ∼ N(µ, σ2)

We will show that the parameterµ is the expectation ofX and the parameterσ2

is the variance ofX.

First we show thatE(X − µ) = 0.

E(X − µ) =

∫ ∞

−∞

(x − µ)f(x)dx

=

∫ ∞

−∞

(x − µ)
1

σ
√

2π
e
−(x−µ)2

2σ2 dx

= −σ2

∫ ∞

−∞

f ′(x)dx = 0.

HenceE X = µ.

Similar arguments give

E(X − µ)2 =

∫ ∞

−∞

(x − µ)2f(x)dx

= −σ2

∫ ∞

−∞

(x − µ)f ′(x)dx = σ2.

�

A useful linearity property of expectation is

E[ag(X) + bh(Y ) + c] = a E[g(X)] + b E[h(Y )] + c, (3.13)

for any real constantsa, b andc and for any functionsg andh of r.vs X andY
whose expectations exist.
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3.2 Two Dimensional Random Variables

Definition 3.3. Let S be a sample space associated with an experimentE, and
X1, X2 be functions, each assigning a real numberX1(e), X2(e) to every outcome
e ∈ E. Then the pairX = (X1, X2) is called a two-dimensional random variable.
The range space of the two-dimensional random variable is

RX = {(x1, x2) : x1 ∈ RX1 , x2 ∈ RX2} ⊂ R2.

�

Definition 3.4. The cumulative distribution function of a two-dimensionalr.v.
X = (X1, X2) is

FX(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) (3.14)

�

3.2.1 Discrete Two-Dimensional Random Variables

If all values ofX = (X1, X2) are countable, i.e., the values are in the range

RX = {(x1i, x2j), i = 1, . . . , n, j = 1, . . . , m}

then the variable is discrete. The c.d.f. of a discrete r.v.X = (X1, X2) is defined
as

FX(x1, x2) =
∑

x2j≤x2

∑

x1i≤x1

p(x1i, x2j) (3.15)

wherep(x1i, x2j) denotes thejoint probability mass function and

p(x1i, x2j) = P (X1 = x1i, X2 = x2j).

As in the univariate case, the joint p.m.f. satisfies the following conditions.

1. p(x1i, x2j) ≥ 0 , for all i, j

2.
∑

all j

∑

all i p(x1i, x2j) = 1

Example 3.12Tossing two fair dice.
Consider an experiment of tossing two fair dice and noting the outcome on each
die. The whole sample space consists of 36 elements, i.e.,

S = {(i, j) : i, j = 1, . . . , 6}.
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Now, with each of these 36 elements associate values of two variables,X1 and
X2, such that

X1 = sum of the outcomes on the two dice,

X2 = | difference of the outcomes on the two dice |.

Then the bivariate r.v.X = (X1, X2) has the following joint probability mas
function.

x1

2 3 4 5 6 7 8 9 10 11 12
0 1

36
1
36

1
36

1
36

1
36

1
36

1 1
18

1
18

1
18

1
18

1
18

2 1
18

1
18

1
18

1
18

x2 3 1
18

1
18

1
18

4 1
18

1
18

5 1
18

�

Marginal p.m.fs

Theorem 3.1. Let X = (X1, X2) be a discrete bivariate random variable with
joint p.m.f. p(x1, x2). Then the marginal p.m.fs ofX1 andX2, pX1 andpX2 , are
given respectively by

pX1(x1) = P (X1 = x1) =
∑

RX2

p(x1, x2) and

pX2(x2) = P (X2 = x2) =
∑

RX1

p(x1, x2).

�

Example 3.12 cont. The marginal distributions of the variablesX1 andX2 are
following.

x1 2 3 4 5 6 7 8 9 10 11 12
P (X1 = x1)

1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

x2 0 1 2 3 4 5
P (X2 = x2)

1
6

5
18

2
9

1
6

1
9

1
18

�
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Expectations of functions of bivariate random variables are calculated the same
way as the univariate r.vs. Letg(x1, x2) be a real valued function defined onRX.
Theng(X) = g(X1, X2) is a r.v. and its expectation is

E[g(X)] =
∑

RX

g(x1, x2)p(x1, x2).

Example 3.12 cont.Forg(X1, X2) = X1X2 we obtain

E[g(X)] = 2 × 0 × 1

36
+ . . . + 7 × 5 × 1

18
=

245

18
.

�

3.2.2 Continuous Two-Dimensional Random Variables

If the values ofX = (X1, X2) are elements of an uncountable set in the Euclidean
plane, then the variable is continuous. For example the values might be in the
range

RX = {(x1, x2) : a ≤ x1 ≤ b, c ≤ x2 ≤ d}
for some reala, b, c, d.

The c.d.f. of a continuous r.v.X = (X1, X2) is defined as

FX(x1, x2) =

∫ x2

−∞

∫ x1

−∞

f(t1, t2)dt1dt2, (3.16)

wheref(x1, x2) is the probability density function such that

1. f(x1, x2) ≥ 0 for all (x1, x2) ∈ R2

2.
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2)dx1dx2 = 1.

The equation (3.16) implies that

∂2F (x1, x2)

∂x1∂x2

= f(x1, x2). (3.17)

Also

P (a ≤ X1 ≤ b, c ≤ X2 ≤ d) =

∫ d

c

∫ b

a

f(x1, x2)dx1dx2. (3.18)
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Figure 3.4: Domain of the p.d.f. (3.21)

The marginal p.d.fs ofX1 andX2 are defined similarly as in the discrete case,
here using integrals.

fX1(x1) =

∫ ∞

−∞

f(x1, x2)dx2, for −∞ < x1 < ∞, (3.19)

fX2(x2) =

∫ ∞

−∞

f(x1, x2)dx1, for −∞ < x2 < ∞. (3.20)

Example 3.13
CalculateP [X ⊆ A], whereA = {(x1, x2) : x1 + x2 ≥ 1} and the joint p.d.f. of
X = (X1, X2) is defined by

fX(x1, x2) =

{

6x1x
2
2 for 0 < x1 < 1, 0 < x2 < 1,

0 otherwise.
(3.21)

The probability is a double integral of the p.d.f. over the regionA. The region is
however limited by the domain in which the p.d.f. is positive, see Figure 3.4.
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We can write

A = {(x1, x2) : x1 + x2 ≥ 1, 0 < x1 < 1, 0 < x2 < 1}
= {(x1, x2) : x1 ≥ 1 − x2, 0 < x1 < 1, 0 < x2 < 1}
= {(x1, x2) : 1 − x2 < x1 < 1, 0 < x2 < 1}.

Hence, the probability is

P (X ⊆ A) =

∫ ∫

A

f(x1, x2)dx1dx2 =

∫ 1

0

∫ 1

1−x2

6x1x
2
2dx1dx2 = 0.9

Also, using formulae ((3.19)) and ((3.20)) we can calculatemarginal p.d.fs.

fX1(x1) =

∫ 1

0

6x1x
2
2dx2 = 2x1x

3
2 |10= 2x1,

fX2(x2) =

∫ 1

0

6x1x
2
2dx1 = 3x2

1x
2
2 |10= 3x2

2.

These functions allow us to calculate probabilities involving only one variable.
For example

P

(

1

4
< X1 <

1

2

)

=

∫ 1
2

1
4

2x1dx1 =
3

16
.

�

Similarly to the case of a univariate r.v. the following linear property for the
expectation holds.

E[ag(X) + bh(X) + c] = a E[g(X)] + b E[h(X)] + c, (3.22)

wherea, b andc are constants andg andh are some functions of the bivariate r.v.
X = (X1, X2).

3.2.3 Conditional Distributions and Independence

Definition 3.5. Let X = (X1, X2) denote a discrete bivariate r.v. with joint
p.m.f.pX(x1, x2) and marginal p.m.fspX1(x1) andpX2(x2). For anyx1 such that
pX1(x1) > 0, the conditional p.m.f. ofX2 given thatX1 = x1 is the function ofx2

defined by

pX2(x2|x1) =
pX(x1, x2)

pX1(x1)
. (3.23)

Analogously, we define the conditional p.m.f. ofX1 givenX2 = x2

pX1(x1|x2) =
pX(x1, x2)

pX2(x2)
. (3.24)

�
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It is easy to check that these functions are indeed p.d.fs. For example, for (3.23)
we have

∑

RX2

pX2(x2|x1) =
∑

RX2

pX(x1, x2)

pX1(x1)
=

∑

RX2
pX(x1, x2)

pX1(x1)
=

pX1(x1)

pX1(x1)
= 1.

Example 3.12 cont.
The conditional p.m.f. ofX2 given, for example,X1 = 5, is

x2 0 1 2 3 4 5
pX2(x2|5) 0 1

2
0 1

2
0 0

�

Analogously to the conditional distribution for discrete r.vs, we define the condi-
tional distribution for continuous r.vs.

Definition 3.6. Let X = (X1, X2) denote a continuous bivariate r.v. with joint
p.d.f. fX(x1, x2) and marginal p.d.fsfX1(x1) andfX2(x2). For anyx1 such that
fX1(x1) > 0, the conditional p.d.f. ofX2 given thatX1 = x1 is the function ofx2

defined by

fX2(x2|x1) =
fX(x1, x2)

fX1(x1)
. (3.25)

Analogously, we define the conditional p.d.f. ofX1 givenX2 = x2

fX1(x1|x2) =
fX(x1, x2)

fX2(x2)
. (3.26)

�

Here too, it is easy to verify that these functions are p.d.fs. For example, for the
function (3.25) we have

∫

RX2

fX2(x2|x1)dx2 =

∫

RX2

fX(x1, x2)

fX1(x1)
dx2

=

∫

RX2
fX(x1, x2)dx2

fX1(x1)

=
fX1(x1)

fX1(x1)
= 1.
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Example 3.13 cont.
The conditional p.d.fs are

fX1(x1|x2) =
fX(x1, x2)

fX2(x2)
=

6x1x
2
2

3x2
2

= 2x1

and

fX2(x2|x1) =
fX(x1, x2)

fX1(x1)
=

6x1x
2
2

2x1
= 3x2

2.

�

The conditional p.d.fs make it possible to calculate conditional expectations. The
conditional expected value of a functiong(X2) given thatX1 = x1 is defined by

E[g(X2)|x1] =



















∑

RX2

g(x2)pX2(x2|x1) for a discrete r.v.,

∫

RX2

g(x2)fX2(x2|x1)dx2 for a continuous r.v..
(3.27)

Example 3.13 cont.
Equation ((3.27)) allows to calculate conditional mean andvariance of a r.v. Here
we have

µX2|x1
= E(X2|x1) =

∫ 1

0

x23x
2
2dx2 =

3

4
,

and

σ2
X2|x1

= var(X2|x1) = E(X2
2 |x1)− [E(X2|x1)]

2 =

∫ 1

0

x2
23x

2
2dx2−

(

3

4

)2

=
3

80
.

�

Definition 3.7. Let X = (X1, X2) denote a continuous bivariate r.v. with joint
p.d.f. fX(x1, x2) and marginal p.d.fsfX1(x1) andfX2(x2). ThenX1 andX2 are
calledindependent random variablesif, for everyx1 ∈ RX1 andx2 ∈ RX2

fX(x1, x2) = fX1(x1)fX2(x2). (3.28)

�
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If X1 andX2 are independent, then the conditional p.d.f. ofX2 givenX1 = x1 is

fX2(x2|x1) =
fX(x1, x2)

fX1(x1)
=

fX1(x1)fX2(x2)

fX1(x1)
= fX2(x2)

regardless of the value ofx1. Analogous property holds for the conditional p.d.f.
of X1 givenX2 = x2.

Example 3.13 cont.
It is easy to notice that

fX(x1, x2) = 6x1x
2
2 = 2x13x

2
2 = fX1(x1)fX2(x2).

So, the variablesX1 andX2 are independent.
�

In fact, two r.vs are independent if and only if there exist functionsg(x1) and
h(x2) such that for everyx1 ∈ RX1 andx2 ∈ RX2 ,

fX(x1, x2) = g(x1)h(x2).

Theorem 3.2.LetX1 andX2 be independent random variables. Then

1. For anyA ⊂ R andB ⊂ R

P (X1 ∈ A, X2 ∈ B) = P (X1 ∈ A)P (X2 ∈ B),

that is, the events{X1 ∈ A} and{X2 ∈ B} are independent events.

2. For g(X1), a function ofX1 only, and forh(X2), a function ofX2 only, we
have

E[g(X1)h(X2)] = E[g(X1)] E[h(X2)].

�

3.2.4 Covariance and Correlation

Covariance and correlation are two measures of the strengthof a relationship be-
tween two r.vs.
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We will use the following notation.
E X1 = µX1

E X2 = µX2

var(X1) = σ2
X1

var(X2) = σ2
X2

Also, we assume thatσ2
X1

andσ2
X2

are finite positive values.

A simplified notationµ1, µ2, σ2
1 , σ2

2 will be used when it is clear which r.vs the
notation refers to.

Definition 3.8. The covariance ofX1 andX2 is defined by

cov(X1, X2) = E[(X1 − µX1)(X2 − µX2)]. (3.29)

�

Definition 3.9. The correlation ofX1 andX2 is defined by

ρ(X1,X2) = corr(X1, X2) =
cov(X1, X2)

σX1σX2

. (3.30)

�

Properties of covariance

• For any r.vsX1 andX2,

cov(X1, X2) = E(X1X2) − µX1µX2.

• If r.vs X1 andX2 are independent then

cov(X1, X2) = 0.

Then alsoρ(X1,X2) = 0.

• For any r.vsX1 andX2 and any constantsa andb,

var(aX1 + bX2) = a2 var(X1) + b2 var(X2) + 2ab cov(X1, X2).
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Properties of correlation

For any r.vsX1 andX2

• −1 ≤ ρ(X1,X2) ≤ 1,

• |ρ(X1,X2)| = 1 iff there exist numbersa 6= 0 andb such that

P (X2 = aX1 + b) = 1.

If ρ(X1,X2) = 1 thena > 0, and ifρ(X1,X2) = −1 thena < 0.

3.2.5 Bivariate Normal Distribution

Here, we use matrix notation. A bivariate r.v. is treated as arandom vector

X =

(

X1

X2

)

.

Let X = (X1, X2)
T be a bivariate random vector with expectation

µ = E X = E

(

X1

X2

)

=

(

µ1

µ2

)

.

and the variance-covariance matrix

V =

(

var(X1) cov(X1, X2)
cov(X2, X1) var(X2)

)

=

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

.

Then the joint p.d.f. of the vector r.v.X is given by

fX(x) =
1

2π
√

det(V )
exp

{

−1

2
(x − µ)TV −1(x − µ)

}

, (3.31)

wherex = (x1, x2)
T.

The determinant ofV is

det V = det

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

= (1 − ρ2)σ2
1σ

2
2 .
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Hence, the inverse ofV is

V −1 =
1

det V

(

σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)

=
1

1 − ρ2

(

σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

)

.

Then the exponent in formula (3.31) can be written as

− 1

2
(x − µ)TV −1(x − µ) =

= − 1

2(1 − ρ2)
(x1 − µ1, x2 − µ2)

(

σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

) (

x1 − µ
x2 − µ

)

= − 1

2(1 − ρ2)

(

(x1 − µ1)
2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

)

.

So, the joint p.d.f. of the 2-dimensional vector r.v.X is

fX(x) =
1

2πσ1σ2

√

(1 − ρ2)

× exp

{ −1

2(1 − ρ2)

(

(x1 − µ1)
2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2

+
(x2 − µ2)

2

σ2
2

)}

.

(3.32)

Remark3.1. Note that whenρ = 0 the joint p.d.f. (3.32) simplifies to

fX(x) =
1

2πσ1σ2
exp

{

−1

2

(

(x1 − µ1)
2

σ2
1

+
(x2 − µ2)

2

σ2
2

)}

,

which can be written as a product of the marginal distributions of X1 andX2.
Hence, ifX = (X1, X2)

T has a bivariate normal distribution andρ = 0 then the
variablesX1 andX2 are independent.

�

3.3 Multivariate Normal Distribution

Denote byX = (X1, . . . , Xn)T an n-dimensional random vector whose each
component is a random variable. Then all the definitions given for bivariate r.vs
extend to the multivariate r.vs.

X has a multivariate normal distribution if its p.d.f. can be written as in (3.31),
where the mean is

µ = (µ1, . . . , µn)T,
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Figure 3.5: Bivariate Normal pdf
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and the variance-covariance matrix has the form

V =











var(X1) cov(X1, X2) . . . cov(X1, Xn)
cov(X2, X1) var(X2) . . . cov(X2, Xn)

...
...

. . .
...

cov(Xn, X1) cov(Xn, X2) . . . var(Xn)











Remark3.2. If X ∼ Nn(µ, V ), B is anm × n matrix, anda is a realm × 1
vector, then the random vector

Y = a + BX

is also multivariate normal with

E(Y ) = a + B E(X) = a + Bµ,

and the variance-covariance matrix,

VY = BV BT.

�

Remark3.3. TakingB = bT, whereb is ann × 1 dimensional vector anda = 0

we obtain
Y = bTX = b1X1 + . . . + bnXn,

and
Y ∼ N (bTµ, bTV b).

�

Two important properties of multivariate normal random vectors are given in the
following proposition.

Proposition 3.1. Suppose that the normal r.v. is partitioned into two subvectors
of dimensionsn1 andn2

X =

(

X(1)

X(2)

)

,
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and, correspondingly, the mean vector and the variance-covariance matrix are
partitioned as

µ =

(

µ(1)

µ(2)

)

V =

(

V11 V12

V21 V22

)

,

where
µ(i) = E(X(i)) and Vij = cov(X(i), X(j)).

Then

1. X(1) and X(2) are independent iff the(n1 × n2) dimensional covariance
matrixV12 is a zero matrix.

2. The conditional distribution ofX(1) givenX(2) = x(2) is

N (µ(1) + V12V
−1

22 (x(2) − µ(2)), V11 − V12V
−1

22 V21).

�

For the bivariate normal r.v. we obtain

E(X1|X2 = x2) = µ1 + ρσ1σ
−1
2 (x2 − µ2) (3.33)

and

var(X1|X2 = x2) = σ2
1(1 − ρ2). (3.34)

Definition 3.10. Xt is a Gaussian time seriesif all its joint distributions are
multivariate normal, i.e., if for any collection of integers i1, . . . , in, the random
vector(Xi1, . . . , Xin)T has a multivariate normal distribution.

�

For proofs of the results given in this chapter see Castella and Berger (1990) and
Brockwell and Davis (2002) or other textbooks on probability and statistics.


