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2.2 Elimination of Trend and Seasonality

Here we assume that the TS model is additive and there existtamd and sea-
sonal components, that is
Xy =my + 8+ Y, (2.6)

where the noise fluctuates about zero, i.e.,
E(Y;) =0,
the seasonality componestis such that
St = St—d,

whered denotes the length of the period and

d
Z S — 0.
k=1

With a seasonal effect of a constant period lengthis convenient to index the
data by the number of the season and the number within thersgas example
monthly data{ = 12) for b years would be denoted by

Ti, j=1,...,b k=1,...,12.

As before we want to extract the residuéﬂsjn order to examine their statistical
properties. The following methods allow for estimation foé trend and the sea-
sonal components.

221 Small Trend Method

This method is useful when the time series has a small treddvarmay assume
that the trend within each period is constant. Then, due eécagsumptions of
model 2.6, the period average is an unbiased estimator dfehd, that is

d
- 1
m; = E;X]k

The seasonal component estimator, which satisfies the rmedemptions is

b
D (X —1y).
j=1

S| =

S =



2.2. ELIMINATION OF TREND AND SEASONALITY 27

) [ f
TR,

Log(Sales)

3 T T T T T T T
65 66 67 68 69 70 71 Year

Figure 2.10: Transformed data and the Trend: Sales of asinduheater.

Removing the estimates of trend and seasonality from the €®ptain the resid-
uals R

Yin=Xjp —m; —3s;, forj=1,...,b, k=1,...,d.
In Figures 2.10 - 2.14 there are plotted the transformed gieesenting sales
of an industrial heater in successive months in years 196851 1constant trend
within a year, detrended observatians—m;, the estimated seasonal components
sy, deseasonlized datg;, — s;, and the residualg;;, respectively.

2.2.2 Classical Decomposition

The method, presented by Brockwell and Davis (2002), caneigthe following
steps:

Step 1 Estimate trend using a moving average filter of the periodtled, that is
estimate trend by

1/1 1
g<§ tq+th+1+---+§Xt+q> fOI’d:Qq,q<t<n—q,

1
E(Xt_q+Xt_q+1+...+Xt+q) ford=2¢+1,g+1<t<n-—gq.

Step 2 Estimate seasonal effectsfor k =1,...,d:
compute the averages of the detrended valuigs- 1), ¢ < 1 = k + jd <
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Figure 2.11: Detrended data: Sales of an industrial heater.
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Figure 2.12: Seasonal component: Sales of an industrigéhea
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Figure 2.13: Deseasonalized data: Sales of an industiééhe
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Figure 2.14: Residuals after removing trend and seasonadteff Sales of an
industrial heater.
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n—q,7 = 1,...,band adjust them so as the seasonal effects meet the model
assumptions, that is estimate the seasonal compepest

d
1
~ ( Eg ml k’:L...,d,

Sk,d, k>d.

Step 3 Remove the seasonality to obtain

Dt:Xt_gty t:1,...,n.

Step 4 Re-estimate the trend, from the deseasonalized variablgs, }.

Step 5 Calculate the residuals

)/t:Xt—’r/th—/S\t.

The decomposition used in MINITAB follows the same ideasibig done in a
different order. Also, it uses median, not mean, for estingateasonal effects. It
involves the following steps:

1. Fitatrend line to the data, using least squares regressio

2. Detrend the data by subtracting the trend component fnemdata (additive
model).

3. Smooth the data using a centered moving average with thleggal to the
length of the seasonal cycle.

4. Subtract the m.a. from the detrended data to obtain wkaifeen referred
to as raw seasonals.

5. Within each seasonal period, the median value of the rasosels is found.
The medians are adjusted so that their sum is zero.
These adjusted medians constitute the so cattesbnal indices.

6. The seasonal indices are used in turn to seasonally dadgidata.
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2.2.3 Differencingat lag d
We define theéag-d differencing operator by

VaX, =X, — X,_g= (1 - BYHX,. (2.7)
Applying the lagd operator to the model (2.6) we obtain

VaXi = (my + s, + Y1) — (My—ag + Si—a + Yi—a)
=my —My—q+ Y, —Y_q

This removes the seasonal effect. Then to remove trend weapyay one of the
methods described in Section 2.1, for example the methauike lag-1 differ-
ence operatov.

Later during the course we will be modelling the residualaoWing their prop-
erties will allow us to forecast future noise values in teohtheir past values (if
they are dependent) and so to forecast future values of tiebl@ of interestX .
First however, we need to recall some properties of randamaldas and their
distributions.



