
Chapter 2

Trend and Seasonal Components

If the plot of a TS reveals an increase of the seasonal and noise fluctuations with
the level of the process then some transformation may be necessary before doing
any further analysis of the TS. For example, the fluctuationsin the UK unem-
ployment data and the sales of an industrial heater data are considerably reduced
(evened) bylog transformation; compare Figures 1.2 and 2.1 and Figures 1.7and
2.2.

Our aim is to estimate and eliminate the deterministic componentsm(t) ands(t)
in such a way that the random noiseYt is a stationary process, in the sense that
its fluctuations are stable and it has no trend. A formal definition of stationarity
will be given in Chapter 4. Such a process can be modelled and analyzed using
the well developed theory of stationary TS. All these components are parts of the
original TS and their overall analysis leads to the analysisof Xt.

2.1 Elimination of Trend in the Absence of Season-
ality

When there is no seasonality, the model (1.1) simplifies to

Xt = mt + Yt, t = 0, 1, . . . , n, (2.1)

whereE(Xt) = mt, that is, we assume thatE(Yt) = 0.

2.1.1 Least Square Estimation of Trend

We assume thatm(t) = m(t,β) is a function of timet, such as a polynomial
of degreek, depending on some unknown parametersβ = (β0, β1, . . . , βk)

T. We
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Figure 2.1: Natural logarithm of the UK unemployment data, compare Fig. 1.2
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Figure 2.2: Natural logarithm of the data: Sales of an industrial heater.
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estimate the parameters by fitting the function to the dataxt, that is by minimizing
the sum of squares of differencesxt − m(t,β). To find a general form of the
estimator we work with the rvsXt rather than their realizationsxt. We find the
estimatorβ̂ of β by minimizing the function:

S(β) =
n∑

t=1

(Xt − m(t,β))2. (2.2)

For example, consider a linear trendm(t, β0, β1) = β0 + β1t. Then

S(β) =
n∑

t=1

(Xt − β0 − β1t)
2.

To minimizeS(β) with respect to the parametersβ = (β0, β1)
T we need to cal-

culate the derivatives ofS(β) with respect toβi, i = 0, 1, compare them to zero
and solve the resulting equations, i.e.,





dS(β)

dβ0

= −2
n∑

t=1

(Xt − β0 − β1t) = 0

dS(β)

dβ1

= −2
n∑

t=1

(Xt − β0 − β1t)t = 0.

This can be written as




n∑

t=1

Xt − nβ0 − β1

n∑

t=1

t = 0

n∑

t=1

Xtt − β0

n∑

t=1

t − β1

n∑

t=1

t2 = 0.

(2.3)

Solving the first equation forβ0 we obtain

β0 =
1

n

n∑

t=1

Xt − β1
1

n

n∑

t=1

t = X̄t − β1t̄.

Hence, equations (2.3) can be written as

{
β0 = X̄t − β1t̄

nXtt − β0nt̄ − β1nt2 = 0.
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Figure 2.3: Residuals of a linear fit to the UK consumption data; compare Fig. 1.8

Then substitutingβ0 to the second equation we can calculate the formula forβ1

and obtain the estimators of both parameters




β̂0 = X̄t − β̂1t̄

β̂1 =
Xtt − X̄tt̄

t2 − (t̄)2
.

We need to distinguish an estimator as a function of rvs from an estimate (i.e.,
a value of the function for a given set of data). This should beobvious from the
context.
Fitting a linear trend to the UK consumption data (see Figure1.8) we obtain the
following estimates

β̂0 = −12349.7, β̂1 = 6.3754.

Hence the estimate of the trend is

m̂(t) = −12349.7 + 6.3754t.

The random noise is then estimated as

ŷt = xt − m̂t = xt − (−12349.7 + 6.3754t).

The plot (see Figure 2.3) of the residuals does not show any clear trend. However
it indicates correlations of the random noise. In this course we will be modelling
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Figure 2.4: Correlation matrix for the residuals of the LeastSquares Regression
fit; UK consumption data.

this kind of random variables to be able to predict future values of the TS, for
example next year values of consumption in the UK.

The matrix plot shows that indeed the residuals are dependent, at least up to two
neighboring values.
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2.1.2 Smoothing by a Moving Average

Let q be a positive integer. We call

Wt =
1

2q + 1

q∑

j=−q

Xt+j (2.4)

asymmetric two-sided moving averageof the process{Xt}.

Simple example
Take the following realization of{Xt}:

{xt} = {5 3 2 4 5 6 7 8 3 9}

For q = 1 we have the following realizations ofWt:

w1 = ?

w2 =
1

3
(5 + 3 + 2) =

10

3

w3 =
1

3
(3 + 2 + 4) =

9

3

w4 =
1

3
(2 + 4 + 5) =

11

3
...

w9 =
1

3
(8 + 3 + 9) =

20

3
w10 = ?

Equation (2.4) definesWt for q + 1 ≤ t ≤ n − q.

Problem: How to calculate values ofWt for t ≤ q and fort > n − q?
One possibility is to defineXt = X1 for t < 1 andXt = Xn for t > n. Then in
the simple example we would getx0 = x1 = 5 andx11 = x10 = 9 and

w1 =
1

3
(5 + 5 + 3) =

13

3

w10 =
1

3
(3 + 9 + 9) =

21

3
.

What can we achieve calculating moving average? IfXt = mt + Yt, then

Wt =
1

2q + 1

q∑

j=−q

mt+j +
1

2q + 1

q∑

j=−q

Yt+j.
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Figure 2.5: Surface air ”temperature change” for the globe.The TS data for years
1880-1985 [Degrees Celsius] and a symmetric five elements moving average.

If we can assume that the sum of noise values is close to zero, thenWt evaluates
the trendmt. It is a good evaluation ofmt if, over [t − q, t + q], the trend is
approximately linear. It is used as an estimator of trend andwe write

m̂t = Wt =
1

2q + 1

q∑

j=−q

Xt+j for q + 1 ≤ t ≤ n − q.

Then, the estimator of the noise is

Ŷt = Xt − Wt.

The moving average valueswt for q = 2 for the surface air ”temperature change”
for the globe data are shown in Figure 2.5 and the residualsyt = xt−wt in Figure
2.6. There is no apparent trend in the residuals.

The process{Wt} is a linear function (linear filter ) of random variables{Xt}. In
general, it may be written as

Wt =
∞∑

j=−∞

ajXt+j, (2.5)

where

aj =





1

2q + 1
for − q ≤ j ≤ q,

0 for |j| > q,
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Figure 2.6: Residuals after removing trend calculated as a symmetric five elements
moving average. Surface air ”temperature change” for the globe data, 1880-1985.

if Wt is a symmetric two-sided ma.

Graphically, it could be presented as in Figure 2.7. It smoothes the data by aver-
aging, that is by removing rapid fluctuations (bursts). It attenuates the noise.

The set of coefficients{aj}j=−q,...,q is also called a linear filter.

If

mt =

q∑

j=−q

ajXt+j

then we say that the filter{aj} passes through without distortion.

The weights{aj} neither have to be all equal nor symmetric. By applying appro-
priate weights it is possible to include a wide choice of trend functions. Suppose
that the trend follows a polynomial of order three and we wantto find a seven
points filter{aj}j=−3,...,3, that is a moving average

Wt =
3∑

j=−3

ajXt+j.
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{xt} {wt}

Figure 2.7: Graphical representation of a linear filter

If the trend is
mt = β0 + β1t + β2t

2 + β3t
3,

then a filter which passes through without distortion is suchthat

mt = Wt and so
3∑

j=−3

ajXt+j = β0 + β1t + β2t
2 + β3t

3.

We are interested in the middle point, i.e., forj = 0. It is convenient to take values
of t such that the middle one is zero. For a seven point average they will be

t = −3, −2, −1, 0, 1, 2, 3.

Then the trend at the middle point, and so the value of the moving average, is

m(t = 0) = β0.

To find β0 we may apply the Least Squares method for the seven points. Differ-
entiating the function

S(β) =
3∑

t=−3

(
Xt − (β0 + β1t + β2t

2 + β3t
3)

)2

with respect to vectorβ gives the following four equations




∂S(β)

∂β0

= − 2
3∑

t=−3

(
Xt − (β0 + β1t + β2t

2 + β3t
3)

)
= 0

∂S(β)

∂β1

= − 2
3∑

t=−3

(
Xt − (β0 + β1t + β2t

2 + β3t
3)

)
t = 0

∂S(β)

∂β2

= − 2
3∑

t=−3

(
Xt − (β0 + β1t + β2t

2 + β3t
3)

)
t2 = 0

∂S(β)

∂β3

= − 2
3∑

t=−3

(
Xt − (β0 + β1t + β2t

2 + β3t
3)

)
t3 = 0.
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After simple manipulation we obtain




3∑

t=−3

Xt =
3∑

t=−3

(
β0 + β1t + β2t

2 + β3t
3
)

3∑

t=−3

Xtt =
3∑

t=−3

(
β0 + β1t + β2t

2 + β3t
3
)
t

3∑

t=−3

Xtt
2 =

3∑

t=−3

(
β0 + β1t + β2t

2 + β3t
3
)
t2

3∑

t=−3

Xtt
3 =

3∑

t=−3

(
β0 + β1t + β2t

2 + β3t
3
)
t3.

However, odd powers oft sum to zero, that is

3∑

t=−3

t =
3∑

t=−3

t3 =
3∑

t=−3

t5 = 0,

what simplifies the equations to




3∑

t=−3

Xt = 7β0 + 28β2

3∑

t=−3

Xtt = 28β1 + 196β3

3∑

t=−3

Xtt
2 = 28β0 + 196β2

3∑

t=−3

Xtt
3 = 196β1 + 1588β3

of which only equations 1 and 3 involveβ0, so we can ignore the other two equa-
tions. Solving equations 1 and 3 forβ0 then gives

β0 =
1

21
(−2X−3 + 3X−2 + 6X−1 + 7X0 + 6X1 + 3X2 − 2X3).

The trend value for any point is then the weighted average of the seven points of
which that point is in the centre,

mt = Wt =
1

21
(−2Xt−3 + 3Xt−2 + 6Xt−1 + 7Xt + 6Xt+1 + 3Xt+2 − 2Xt+3).
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The weights are
(
−

2

21
,

3

21
,

6

21
,

7

21
,

7

21
,

3

21
, −

2

21

)
=

1

21
(−2, 3, 6, 7, 6, 3, −2),

which due to the symmetry can be written in a short way, such as

1

21
(−2, 3, 6, 7),

the bold typeface indicating the middle weight.

In general, if we want to find a linear filter{aj} appropriate for fitting a polyno-
mial trend of orderk, we have to minimize

S(β) =

q∑

t=−q

(
Xt − (β0 + β1t + . . . + βkt

k)
)2

and find the solution forβ0 in terms ofXt, t = −q, . . . , q.

The following filters are often applied:

• {aj} being successive terms in the expansion(1
2

+ 1
2
)2q. Forq = 1 we get

{aj}j=−1,0,1 =

(
1

4
,
1

2
,
1

4

)
.

For largeq the weights approximate to a normal curve.

• So called Spencer’s 15-point moving average (used for smoothing mortality
statistics to obtain life tables). Hereq = 7 and the weights are

{aj}j=−7,...,7 =
1

320
(−3,−6,−5, 3, 21, 46, 67,74).

• The Henderson’s moving average, which aims to follow a cubicpolynomial
trend. For example, forq = 4 the Henderson’s m.a. is

{aj}j=−4,...,4 = (−0.041,−0.010,−0.119, 0.267,0.330).

Having estimated the trend we can calculate the residuals, as in the previous case,
i.e.,

ŷt = xt − wt = xt −

q∑

j=−q

ajxt+j =

q∑

j=−q

bjxt+j,
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Figure 2.8: Graphical representation of a double linear filter

where

bj =

{
−aj, for j = −q, . . . , q, j 6= 0
1 − a0, for j = 0

and if
∑

aj = 1 then
∑

bj = 0.

Sometimes it may be necessary to apply filters more than once to obtain a station-
ary process. Two filters might be represented as in Figure 2.8.

The resulting time series{Zt} can be written as

Zt =
s∑

k=−s

bkWt+k =
s∑

k=−s

bk

q∑

j=−q

ajXt+k+j =

s+q∑

i=−(s+q)

ciXt+i.

For example, fors = q = 1 we obtain

Zt =
1∑

k=−1

bk

1∑

j=−1

ajXt+k+j =

b−1a−1Xt−2 + (b−1a0 + b0a−1)Xt−1 + (b−1a1 + b0a0 + b1a−1)Xt+

(b0a1 + b1a0)Xt+1 + b1a1Xt+2 =
2∑

i=−2

ciXt+i.

The weights{ci} can be obtained by so calledconvolution of the weights{aj}
and{bk}, the operation denoted by⋆,

{ci} = {aj} ⋆ {bk},

whereci is a sum of all productsajbk for which j + k = i.

Using this operation in the above example gives

{ci} = (a−1, a0, a1) ⋆ (b−1, b0, b1)

= (a−1b−1, a0b−1 + a−1b0, a−1b1 + a0b0 + a1b−1, a0b1 + a1b0, a1b1)

= (c−2, c−1, c0, c1, c2).
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If one of the moving averages is not symmetric, we calculate the convoluted
weights in the same way, see the example below.

(a−1, a0, a1) ⋆ (b0, b1) =

(a−1b0, a0b0 + a−1b1, a0b1 + a1b0, a1b1) =

(c−1, c0, c1, c2).

With {aj} =
(

1
3
, 1

3
, 1

3

)
and{bk} =

(
1
2
, 1

2

)
we get

{ci} =

(
1

3
,
1

3
,
1

3

)
⋆

(
1

2
,
1

2

)
=

(
1

6
,
1

3
,
1

3
,
1

6

)
.

and the new seriesZt is the following combination ofXt

Zt =
1

6
Xt−1 +

1

3
Xt +

1

3
Xt+1 +

1

6
Xt+2.

2.1.3 Differencing

Differencing is a trend removing operation by using specialkind of a linear filter
with weights(−1, 1). This procedure is often repeated until a stationary seriesis
obtained.

We denote thefirst (lag 1) difference operatorby∇, that is

∇Xt = Xt − Xt−1.

Here another operator comes into play, it is called thebackward shift operator,
usually denoted byB, such that

BXt = Xt−1.

Hence,
∇Xt = Xt − BXt = (1 − B)Xt.

Note that
Xt−2 = BXt−1 = B(BXt) = B2Xt.

In general
BjXt = Xt−j.

Similarly,
∇2Xt = ∇(∇Xt)

= (1 − B)(1 − B)Xt

= (1 − 2B + B2)Xt

= Xt − 2Xt−1 + Xt−2.



24 CHAPTER 2. TREND AND SEASONAL COMPONENTS

1960 1970 1980 1990 2000 Year
-20

-10

0

10

20

30

xt - xt-1

6.65

Figure 2.9: The differenced data: UK Consumption, compare Figures 1.1 and 1.8

By the way, this is what we would get by convolution of two linear filters with
weights(−1, 1)

(a−1, a0) ⋆ (b−1, b0) = (−1, 1) ⋆ (−1, 1) =

((−1) · (−1), (−1) · 1 + 1 · (−1), 1 · 1) =

(1,−2, 1) = (c−2, c−1, c0).

In general, we may write

∇jXt = ∇(∇j−1Xt), for j ≥ 1, ∇0Xt = Xt.

Assume that a TS model is

Xt = mt + Yt,

where the trendmt is a polynomial of degreek. Then fork = 1 we have

∇Xt = Xt − Xt−1

= mt + Yt − (mt−1 + Yt−1)

= β0 + β1t − [β0 + β1(t − 1)] + ∇Yt

= β1 + ∇Yt.
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Similarly, for k = 2 we obtain

∇2Xt = Xt − 2Xt−1 + Xt−2

= mt + Yt − 2(mt−1 + Yt−1) + mt−2 + Yt−2

= β0 + β1t + β2t
2 − 2[β0 + β1(t − 1) + β2(t − 1)2]

+ β0 + β1(t − 2) + β2(t − 2)2 + ∇2Yt

= 2β2 + ∇2Yt.

For a polynomial trend of degree k we have

∇kXt = k!βk + ∇kYt.

It means that if the noise fluctuates about zero, then k-th differencing of a TS with
a polynomial trend of degreek should give a stationary process with mean about
k!βk.

ExampleUK consumption data.
The data show a linear trend. The least squares methods givesthe following esti-
mates

m̂(t) = −12349.7 + 6.3754t

and we can see from the graph of the differenced data (Figure 2.9) that the mean
is close toβ1 and that there is no trend.


