
Parameter estimation

via constraint propagation

Warwick Tucker

The CAPA group

Department of Mathematics

University of Uppsala, Sweden

Introduction

Problem formulation

A classic inverse problem/parameter estimation setting: given a
finitely parametrized model function

y = f(x; p1, p2, . . . , pm) = f(x; p),

together with some (noisy) data

(x1, y1), (x2, y2), . . . , (xN , yN)

and a search region P in parameter space, try to find parameters
that give a good agreement between the data and the model.

Introduction

Problem formulation

A classic inverse problem/parameter estimation setting: given a
finitely parametrized model function

y = f(x; p1, p2, . . . , pm) = f(x; p),

together with some (noisy) data

(x1, y1), (x2, y2), . . . , (xN , yN)

and a search region P in parameter space, try to find parameters
that give a good agreement between the data and the model.

Here, f can be almost anything (a function, an ODE, a PDE,
some process...). This means that no single method is best.

Introduction

Known difficulties

Introduction

Known difficulties

Existence: with noisy data, or with an incorrect model, there
is usually no parameter at all that produces a perfect fit
between the model and the data.

Introduction

Known difficulties

Existence: with noisy data, or with an incorrect model, there
is usually no parameter at all that produces a perfect fit
between the model and the data.

Uniqueness: even with unlimited amounts of exact data,
there might not exist a unique solution p♯ ∈ P such that

f(xi; p
♯) = yi i = 1, . . . , N.

Introduction

Known difficulties

Existence: with noisy data, or with an incorrect model, there
is usually no parameter at all that produces a perfect fit
between the model and the data.

Uniqueness: even with unlimited amounts of exact data,
there might not exist a unique solution p♯ ∈ P such that

f(xi; p
♯) = yi i = 1, . . . , N.

Instability: many inverse problems are extremely unstable
(ill-conditioned): a small perturbation in data produces a large
change in the fitted parameter.

Introduction

A statistical approach

Assume that the model is correct, and that the data is perturbed
via some probability distribution (almost always normal):

Introduction

A statistical approach

Assume that the model is correct, and that the data is perturbed
via some probability distribution (almost always normal):

(1) Generate data: y
♯
i = f(xi; p

♯) i = 1, . . . , N

Introduction

A statistical approach

Assume that the model is correct, and that the data is perturbed
via some probability distribution (almost always normal):

(1) Generate data: y
♯
i = f(xi; p

♯) i = 1, . . . , N

(2) Perturb data: yi = y
♯
i + ηi ηi ∼ N(0, σ2)

Introduction

A statistical approach

Assume that the model is correct, and that the data is perturbed
via some probability distribution (almost always normal):

(1) Generate data: y
♯
i = f(xi; p

♯) i = 1, . . . , N

(2) Perturb data: yi = y
♯
i + ηi ηi ∼ N(0, σ2)

Then use a (weighted) least-squares approach to find the best
parameter.

Introduction

A statistical approach

Assume that the model is correct, and that the data is perturbed
via some probability distribution (almost always normal):

(1) Generate data: y
♯
i = f(xi; p

♯) i = 1, . . . , N

(2) Perturb data: yi = y
♯
i + ηi ηi ∼ N(0, σ2)

Then use a (weighted) least-squares approach to find the best
parameter.

If the parameters enter f linearly, this is “straight-forward”.

Introduction

A statistical approach

Assume that the model is correct, and that the data is perturbed
via some probability distribution (almost always normal):

(1) Generate data: y
♯
i = f(xi; p

♯) i = 1, . . . , N

(2) Perturb data: yi = y
♯
i + ηi ηi ∼ N(0, σ2)

Then use a (weighted) least-squares approach to find the best
parameter.

If the parameters enter f linearly, this is “straight-forward”.

Otherwise, we have moved the problem to global optimization.

Introduction

A statistical approach

Assume that the model is correct, and that the data is perturbed
via some probability distribution (almost always normal):

(1) Generate data: y
♯
i = f(xi; p

♯) i = 1, . . . , N

(2) Perturb data: yi = y
♯
i + ηi ηi ∼ N(0, σ2)

Then use a (weighted) least-squares approach to find the best
parameter.

If the parameters enter f linearly, this is “straight-forward”.

Otherwise, we have moved the problem to global optimization.

The selection of weights is almost always a delicate issue.

Introduction

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed
via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to
locate nearby models that are consistent with nearby data:

Introduction

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed
via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to
locate nearby models that are consistent with nearby data:

(1) Widen data: yi = yi(1 + α[−1, 1]) i = 1, . . . , N

Introduction

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed
via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to
locate nearby models that are consistent with nearby data:

(1) Widen data: yi = yi(1 + α[−1, 1]) i = 1, . . . , N

(2) Consistent set: S = ∩N
i=1{p ∈ P : f(xi; p) ∈ yi}.

Introduction

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed
via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to
locate nearby models that are consistent with nearby data:

(1) Widen data: yi = yi(1 + α[−1, 1]) i = 1, . . . , N

(2) Consistent set: S = ∩N
i=1{p ∈ P : f(xi; p) ∈ yi}.

Of course, S is very hard to find, but by discretizing the search
space P → PK , we can form an inner/outer enclosure of S:

S = {p ⊂ PK : f(xi;p) ⊂ yi for all i = 1, . . . , N}

S = {p ⊂ PK : f(xi;p) ∩ yi 6= ∅ for all i = 1, . . . , N}

Introduction

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed
via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to
locate nearby models that are consistent with nearby data:

(1) Widen data: yi = yi(1 + α[−1, 1]) i = 1, . . . , N

(2) Consistent set: S = ∩N
i=1{p ∈ P : f(xi; p) ∈ yi}.

Of course, S is very hard to find, but by discretizing the search
space P → PK , we can form an inner/outer enclosure of S:

S = {p ⊂ PK : f(xi;p) ⊂ yi for all i = 1, . . . , N}

S = {p ⊂ PK : f(xi;p) ∩ yi 6= ∅ for all i = 1, . . . , N}

The coarser the discretization of P, the less we trust the model.

Set-valued computations

Interval analysis

All our computations are set-valued, and are based on the inclusion

principle:
range(g;x) = {g(x) : x ∈ x} ⊆ g(x)

Set-valued computations

Interval analysis

All our computations are set-valued, and are based on the inclusion

principle:
range(g;x) = {g(x) : x ∈ x} ⊆ g(x)

x

g(x)

x

g(x)

Set-valued computations

Interval analysis

All our computations are set-valued, and are based on the inclusion

principle:
range(g;x) = {g(x) : x ∈ x} ⊆ g(x)

x

g(x)

x

g(x)

Interval Computations Web Page

http://www.cs.utep.edu/interval-comp

Set-valued computations

Points versus sets in parameter space

We move from the point-valued model function f(x; p) to the
set-valued version f(x;p).

Set-valued computations

Points versus sets in parameter space

We move from the point-valued model function f(x; p) to the
set-valued version f(x;p).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Figure: (a) p = 0.15, a point in P . (b) p = [0.14, 0.16], a subset of P .
The model function is f(x; p) = xe−px, and 10 samples are shown.

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately.

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately.

We will associate each sub-box p of the parameter space to one of
three categories:

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately.

We will associate each sub-box p of the parameter space to one of
three categories:

(1) consistent

if f(xi;p) ⊂ yi for all i = 0, . . . , N . SAVE

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately.

We will associate each sub-box p of the parameter space to one of
three categories:

(1) consistent

if f(xi;p) ⊂ yi for all i = 0, . . . , N . SAVE

(2) inconsistent

if f(xi;p) ∩ yi = ∅ for at least one i. TRASH

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: P = ∪K
j=1pj

and examine each pj separately.

We will associate each sub-box p of the parameter space to one of
three categories:

(1) consistent

if f(xi;p) ⊂ yi for all i = 0, . . . , N . SAVE

(2) inconsistent

if f(xi;p) ∩ yi = ∅ for at least one i. TRASH

(3) undetermined

not (1), but f(xi;p) ∩ yi 6= ∅ for all i = 0, . . . , N . SPLIT

Parameter reconstruction

Example

Consider the model function

f(x; p1, p2) = 5e−p1x − 4× 10−6e−p2x

with samples taken at x = 0, 5 . . . , 40 using p⋆ = (0.11,−0.32).
With a relative noise level of 90%, we get the following set of
consistent parameters:

Parameter reconstruction

Example

Consider the model function

f(x; p1, p2) = 5e−p1x − 4× 10−6e−p2x

with samples taken at x = 0, 5 . . . , 40 using p⋆ = (0.11,−0.32).
With a relative noise level of 90%, we get the following set of
consistent parameters:

Parameter reconstruction

Varying the relative noise levels between 10, 20 . . . , 90%, we get
the following indeterminate sets.

Constraint propagation

Constraining the parameter/data space

Constraint propagation

Constraining the parameter/data space

Q: How do we speed up the estimation process?

Constraint propagation

Constraining the parameter/data space

Q: How do we speed up the estimation process?

A: By quickly discarding inconsistent parameters/data!

Constraint propagation

Constraining the parameter/data space

Q: How do we speed up the estimation process?

A: By quickly discarding inconsistent parameters/data!

Q: How do we do that?

Constraint propagation

Constraining the parameter/data space

Q: How do we speed up the estimation process?

A: By quickly discarding inconsistent parameters/data!

Q: How do we do that?

A: By set-valued constraint propagation!

Constraint propagation

Constraining the parameter/data space

Q: How do we speed up the estimation process?

A: By quickly discarding inconsistent parameters/data!

Q: How do we do that?

A: By set-valued constraint propagation!

Example

Let f(x; p) = xe−px, and consider the situation p = [0, 1] and
(x,y) = (2, [1, 3]).

Constraint propagation

Constraining the parameter/data space

Q: How do we speed up the estimation process?

A: By quickly discarding inconsistent parameters/data!

Q: How do we do that?

A: By set-valued constraint propagation!

Example

Let f(x; p) = xe−px, and consider the situation p = [0, 1] and
(x,y) = (2, [1, 3]). By a forward evaluation, we have

f(2; [0, 1]) = 2e−2[0,1] = 2e[−2,0] = 2[e−2, 1] = [2e−2, 2].

Constraint propagation

Constraining the parameter/data space

Q: How do we speed up the estimation process?

A: By quickly discarding inconsistent parameters/data!

Q: How do we do that?

A: By set-valued constraint propagation!

Example

Let f(x; p) = xe−px, and consider the situation p = [0, 1] and
(x,y) = (2, [1, 3]). By a forward evaluation, we have

f(2; [0, 1]) = 2e−2[0,1] = 2e[−2,0] = 2[e−2, 1] = [2e−2, 2].

This allows us to contract the data range according to

y 7→ y ∩ f(x;p) = [1, 3] ∩ [2e−2, 2] = [1, 2].

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate
constraint propagations.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate
constraint propagations.

x

p

×

× neg exp

n1

n2

n3 n4 n5

n6 = y

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate
constraint propagations.

x

p

×

× neg exp

n1

n2

n3 n4 n5

n6 = y

n1 = x

n2 = p

n3 = n1 × n2

n4 = −n3

n5 = en4

n6 = n1 × n5.

Figure: The DAG representation of a forward sweep of y = xe−px,
together with the corresponding code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by
moving backwards in the code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by
moving backwards in the code list.

x

y

÷

÷neg log

n1p = n2

n3 n4 n5

n6

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by
moving backwards in the code list.

x

y

÷

÷neg log

n1p = n2

n3 n4 n5

n6

n5 = n6 ÷ n1

n4 = log n5

n3 = −n4

n2 = n3 ÷ n1.

Figure: The DAG representation of a backward sweep of
y = xe−px, together with the corresponding code list.

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1].

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1]. The forward sweep, performed in Example 2,
contracts the interval data to y = [1, 2].

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1]. The forward sweep, performed in Example 2,
contracts the interval data to y = [1, 2]. Performing a backward
sweep contracts the interval parameter to p = [0, 12 log 2]:

n5 = n6 ÷ n1 = [1, 2] ÷ 2 = [12 , 1]
n4 = log n5 = log [12 , 1] = [− log 2, 0]
n3 = −n4 = [0, log 2]
n2 = n3 ÷ n1 = 1

2 [0, log 2] ≈ [0, 0.34657359].

Constraint propagation

Example

Again, we work on the model function y = f(x; p) = xe−px, but
now with the data (x,y) = (2, [1, 3]), together with the parameter
domain p = [0, 1]. The forward sweep, performed in Example 2,
contracts the interval data to y = [1, 2]. Performing a backward
sweep contracts the interval parameter to p = [0, 12 log 2]:

n5 = n6 ÷ n1 = [1, 2] ÷ 2 = [12 , 1]
n4 = log n5 = log [12 , 1] = [− log 2, 0]
n3 = −n4 = [0, log 2]
n2 = n3 ÷ n1 = 1

2 [0, log 2] ≈ [0, 0.34657359].

Note that, in one forward/backward sweep, we managed to exclude
over 65% of the parameter domain, at the same time reducing the
data uncertainty by 50%.

Mixed-effects models

Mixed-effects models

We are given several data sets (trajectories) corresponding to k

different “individuals”:

individual1 : (x11, y11), (x12, y12), . . . , (x1N , y1N1
)

individual2 : (x21, y21), (x22, y22), . . . , (x2N , y2N2
)

...
...

...

individualk : (xk1, yk1), (xk2, yk2), . . . , (xkN , ykNk
).

Some model parameters are equal (shared) for all individuals, and
some are distinct.

Mixed-effects models

Mixed-effects models

We are given several data sets (trajectories) corresponding to k

different “individuals”:

individual1 : (x11, y11), (x12, y12), . . . , (x1N , y1N1
)

individual2 : (x21, y21), (x22, y22), . . . , (x2N , y2N2
)

...
...

...

individualk : (xk1, yk1), (xk2, yk2), . . . , (xkN , ykNk
).

Some model parameters are equal (shared) for all individuals, and
some are distinct.

We need to consider all individuals simultaneously. Otherwise
the number of unknown parameters may be too large.

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p
♯
1 + ηi, ηi ∼ N(0, σ2)

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p
♯
1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y
♯
ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p
♯
1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y
♯
ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

For this specific example, we will use Np ∈ {1, 2, 5, 50} subjects,
sampled at Nd = 10 data sites, evenly spaced within [100, 1600].

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p
♯
1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y
♯
ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

For this specific example, we will use Np ∈ {1, 2, 5, 50} subjects,
sampled at Nd = 10 data sites, evenly spaced within [100, 1600].

Target parameters:
p♯ = (191.84, 8.153,−0.0029), σ = 20, ǫ ∈ {0.01, 0.1, 0.2, 0.5}.

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

Model function: f(x; p) =
p1

1 + p2ep3x

Individual parameter: pi1 = p
♯
1 + ηi, ηi ∼ N(0, σ2)

Data perturbation: yij = y
♯
ij(1 + θij), θij ∼ U(−ǫ,+ǫ)

For this specific example, we will use Np ∈ {1, 2, 5, 50} subjects,
sampled at Nd = 10 data sites, evenly spaced within [100, 1600].

Target parameters:
p♯ = (191.84, 8.153,−0.0029), σ = 20, ǫ ∈ {0.01, 0.1, 0.2, 0.5}.

Search region:
P = ([0, 300], [0, 9], [−1, 0]).

A mixed-effects model for orange tree truncs

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

Figure: Data inflation and contraction for the example. The graph of the
model function for one subject (blue line). The data points are marked
with red dots. The inflated data sets are shown as striped bars, and the
re-contracted data as green bars.

A mixed-effects model for orange tree truncs

Numerical results

Np = 1 Np = 2

ǫ = 0.01 190.639 (– –) (0.010) 193.141 (19.6) (0.013)
ǫ = 0.1 194.139 (– –) (0.092) 195.233 (21.1) (0.097)
ǫ = 0.2 189.139 (– –) (0.190) 193.437 (20.3) (0.192)
ǫ = 0.5 167.226 (– –) (0.604) 167.770 (26.6) (0.589)

Np = 5 Np = 50

ǫ = 0.01 191.675 (20.1) (0.014) 191.239 (20.1) (0.012)
ǫ = 0.1 192.954 (21.4) (0.099) 198.428 (22.2) (0.110)
ǫ = 0.2 191.773 (20.3) (0.203) 197.580 (23.6) (0.214)
ǫ = 0.5 164.656 (23.9) (0.620) 174.318 (27.1) (0.618)

Table: The results of four experiments for the example, each using
100 trial runs with p1 = 191.184, and σ = 20.0. For each pair
(ǫ,Np), we display the triple µ(p1), µ(σ), and µ(ǫ) – the average
estimates of the distribution parameters for p1, and the data error.

A mixed-effects model for orange tree truncs

202
204

206
208

210
212

8.1

8.15

8.2

−2.98

−2.97

−2.96

−2.95

−2.94

x 10
−3

p1p2

p3

Figure: The set of consistent parameters for two subjects from the
example.

Summary

Main steps

Summary

Main steps

Relax the problem via data inflation,

Summary

Main steps

Relax the problem via data inflation,

Reduce the data and parameter sets via constraint
propagation,

Summary

Main steps

Relax the problem via data inflation,

Reduce the data and parameter sets via constraint
propagation,

Produce traditional statistics via data gridding/sampling.

Summary

Main steps

Relax the problem via data inflation,

Reduce the data and parameter sets via constraint
propagation,

Produce traditional statistics via data gridding/sampling.

Computer-Aided Proofs in Analysis Web Page

http://www2.math.uu.se/~warwick/CAPA/

http://www2.math.uu.se/~warwick/CAPA/

A short message from your sponsors...

Validated Numerics:

A Short Introduction to Rigorous

Computations

Warwick Tucker

Princeton University Press, 2011

ISBN: 9780691147819

152 pp.|6 x 9|41 illus.|12 tables.

USD 45.00/GBP 30.95

http://press.princeton.edu/titles/9488.html

http://press.princeton.edu/titles/9488.html

