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Bayesian design problem

Usually quantify experimental goals via a utility function u(d)

Optimal design can be expressed as

d∗ = argmax
d∈D

∫

u(d , z)p(z |d)dz ,

d∗ = argmax
d∈D

K
∑

m=1

p(m)

∫

u(d , z ,m)p(z |m, d)dz
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Why do this to ourselves?

Why make a difficult problem more difficult?

What is FO, FOCE, nonlinearity?

Appropriate to design under the planned estimation framework

Model and parameter uncertainty are most rigoriously handled
within Bayesian framework

Inference framework more appropriate for complex models

Wider variety of useful criteria/utility functions, for example,
for model choice (mutual information)
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Bayesian sequential design

Adaptive decisions as new data are collected

More robust to parameter and model uncertainty

Natural to use Bayesian framework. Posterior becomes new
prior

Next decision obtained by looking forward to all future
decisions (backward induction)

Simplified by myopic design (one-at-a-time)

Next design point dt+1 = argmaxU(d |y1:t , d1:t). y1:t
collected data at design d1:t . U is utility function
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Computational difficulties

In sequential design, one needs to evaluate u(d |y1:t , d1:t)

∫

z

u(d , z |y1:t , d1:t)p(z |d , y1:t , d1:t)dz

K
∑

m=1

p(m|y1:t , d1:t)

∫

z

u(d , z ,m|y1:t , d1:t)p(z |d ,m, y1:t , d1:t)dz

Then, need to find d that maximises u(d |y1:t , d1:t)

Hence, need to approximate or sample from a large number of
posterior distributions for different priors, designs and data

How can this be done efficiently?
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SMC for one static model m

Sample from sequence of targets

Data annealing here

pt(θm|m, y1:t , d1:t) = f (y1:t |m, θm, d1:t)p(θm|m)/Zm,t , for t = 1, . . . ,T .

y1:t (independent) data up to t, d1:t design points up to t, θm
parameter for model m = 1, . . . ,K .

p(y1:t |m, d1:t) = Zm,t =

∫

f (y1:t |m, θm, d1:t)p(θm|m)dθm.

SMC: Generate a weighted sample (particles) for each target
in the sequence via steps

Reweight: particles as data comes in (efficient)
Resample: when ESS small
Mutation: diversify duplicated particles (can be efficient)
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SMC for one static model m (algorithm) Chopin (2002)

Have current particles {W i
t , θ

i
t}

N
i=1 based on data y1:t

Re-weight step to included yt+1

W i
t+1 ∝ W i

t f (yt+1|θ
i
t , dt+1).

Check effective sample size: ESS = 1/
∑N

i=1(W
i
t+1)

2

If ESS > E (e.g. E = N/2) go back to re-weight step for next
observation

If ESS < E do the following

Resample proportional to weights. Duplicates good particles

Mutation: Move all particles via MCMC kernel say R times
(adaptive proposal)
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SMC for multiple models

Effectively run an SMC algorithm for each model
m = 1, . . . ,K

Have set of N particles for each model {W i
m,t , θ

i
m,t}

N
i=1.

ESS for each model m

resampling and within-model updates when required

Design part: use data up to t, y1:t , and particles of all models
to compute the next design dt+1

James McGree DEMA2015



Introduction SMC Utility Example Conclusion Related and future work References

SMC Estimate of Evidence Del Moral et al (2006)

It can be shown

Zt+1/Zt = f (yt+1|y1:t , dt+1) =

∫

θ

f (yt+1|θ, dt+1)p(θ|y1:t , d1:t)dθ.

Using SMC particles to approximate posterior at t gives
estimator

Zt+1/Zt ≈
N
∑

i=1

W i
t f (yt+1|θ

i
t , dt+1).

Can then obtain approximation of Zt+1 through

Zt+1

Z0
=

Zt+1

Zt

Zt

Zt−1
· · ·

Z1

Z0
.

Also gives estimate of posterior predictive probability of yt+1
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But what about random effects models?

SMC requires the likelihood to be computed a large number
of times

However, computing the likelihood can be difficult for random
effect models as, for example

f (y |θ, d) =

∫

f (y |θ, β, d)p(β|µ,Ω)dβ

If model is nonlinear then generally analytically intractable

Can be approximated

Needs to be computationally efficient and unbiased

SMC for random effects models?

Efficient approximates of model evidence and predictive
probabilities of random effect models....
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Exact-Approximate SMC

The (observed data) likelihood

f (y |θ(i), d) =

∫

f (y |β, θ(i), d)p(β|µ(i),Ω(i))dβ

Can be estimated unbiasedly. For example, from McGree et.
al (2015), for each particle θ(i)

f (y |θ(i), d) =
1

Q

Q
∑

j=1

f (y |β(j), θ(i), d) (1)

where β(j) ∼ p(µ(i),Ω(i)), j = 1, . . . ,Q.

SMC with unbiased estimate of likelihood → an
exact-approximate algorithm! (Duan and Fulop 2013)

Andrieu and Roberts (2009) for MCMC and Tran et al.
(2014) for importance sampling.
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Bayesian A-optimality

For a single model, this can be achieved by maximising the
following:

u(d |y1:t , d1:t) = 1/trace VAR[θ|d , y1:t , d1:t ].

This is extended to the case of K models by maximising the
inverse of the sum of the traces of the posterior variances for all K
models. That is,

u(d |y1:t , d1:t) = 1/
K
∑

l=1

log trace VAR[θl |d , y1:t , d1:t ,M = l ].

Other utilities are also available for parameter estimation (KLD,
Bayesian D-optimality, etc).
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Utility estimation in sequential design

Expected utility of d is given by u(d |y1:t , d1:t) =

K
∑

m=1

p(m|y1:t , d1:t)

∫

z

u(d , z ,m|y1:t , d1:t)p(z |m, d , y1:t , d1:t)dz

For each θim,t , simulate z im,t . Then, MC integration yields:

u(d |y1:t , d1:t) ≈
K
∑

m=1

p(m|y1:t , d1:t)
N
∑

i=1

W i
m,tu(d , z

i
m,t ,m|y1:t , d1:t).

The u(d , z im,t ,m|y1:t , d1:t) is evaluated via importance sampling

where z im,t (and d) are supposed observed data.
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Application - Pharmacokinetics

Figure: One compartment infusion model
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One compartment infusion - Pharmacokinetics

For subject t with design dt = (d1t , d2t), define

yt ∼ MVN(g(βt , dt), δI ),

βt ∼ MVN(µ,Ω),

Here βt is random effect for tth subject

g(βt , dt) =

{

D
Tinf

1
ktvt

(1− exp(−kdt)), for dt ≤ Tinf
D

Tinf
1

ktvt
(1− exp(−ktTinf )) exp(−k(t − Tinf )), else

where (kt , vt) = exp(βt + µ)

Priors: µ ∼ MVN(0,Σ), for Σ known.

Ω ∼ InvWish(Ψ, ν), for Ψ and ν known

log δ ∼ N(a, b), for a and b known,

Design objective is to learn about parameters: θ = (µ,Ω, δ).

James McGree DEMA2015



Introduction SMC Utility Example Conclusion Related and future work References

One compartment infusion - Pharmacokinetics
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Figure: Prior predictive plot for one-compartment infusion model
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One compartment infusion - Pharmacokinetics

Computationally expensive to implement search algorithm.

Consider discretised design space (mins since start of infusion
of length Tinf = 30 mins):
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Design is found via Bayesian A-optimality and random design.
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One compartment infusion - Pharmacokinetics
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Figure: Selected A-optimal designs for one-compartment infusion model
in simulation study.
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One compartment infusion - Pharmacokinetics
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Figure: Utility values for the 500 simulated trials for the A-optimality and
random utility.
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Discussion

Developed a framework to efficiently undertake Bayesian
design in PK settings

Framework is highly computational - GPU made this work
possible in a reasonable amount of time

Also considered design for 1cpt and 2cpt models (not shown
here)

Framework should be useful in general sequential setting
(GLMMs)?
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Related Bayesian design work

MCMC framework

The so called ‘Mueller algorithm’ (Mueller, 1999) with
extensions (Amzal et al., 2006)

GLMs (Weir, et al., 2007 and McGree et al., 2012)

Accelerated life test (Weaver et al., 2016)

SMC framework

Estimation for GLMs (Drovandi, McGree and Pettitt, 2013,
Azadi et al., 2014)

Model discrimination for GLMs and GNLMs (Drovandi,
McGree and Pettitt, 2014)

Model discrimination and estimation for GLMs and GNLMs
(McGree, 2016)

ABC framework

Intractable likelihoods (Drovandi and Pettitt, 2014, Price et
al., 2016)
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Future Bayesian design

Further extensions to mixed effects settings

Model discrimination?

Dual purpose designs - model discrimination and estimation?

Static designs (high dimensional problems)

Need fast search algorithms - ACE (Overstall and Woods,
2015)?

Need fast posterior approximations - Expectation propagation
(Minka, 2005), Variational approximations (Nott et al. ,
2013)?
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