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Introduction

Bayesian design problem

m Usually quantify experimental goals via a utility function u(d)

m Optimal design can be expressed as

d* = argTea%(/u(d, z)p(z|d)dz,

K
d* =arg Teagz p(m)/u(d,z, m)p(z|m, d)dz

m=1
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Introduction

Why do this to ourselves?

m Why make a difficult problem more difficult?
m What is FO, FOCE, nonlinearity?

m Appropriate to design under the planned estimation framework

Model and parameter uncertainty are most rigoriously handled
within Bayesian framework

Inference framework more appropriate for complex models

m Wider variety of useful criteria/utility functions, for example,
for model choice (mutual information)
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Introduction

Bayesian sequential design

m Adaptive decisions as new data are collected

m More robust to parameter and model uncertainty

m Natural to use Bayesian framework. Posterior becomes new
prior

m Next decision obtained by looking forward to all future
decisions (backward induction)

m Simplified by myopic design (one-at-a-time)

m Next design point di11 = argmax U(d|y1.t, di:t). Y1t

collected data at design di;. U is utility function
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Introduction

Computational difficulties

m In sequential design, one needs to evaluate u(d|yi.+, di:¢)

/ U(d’ Z’yl:t’ dl:t)p(z‘d’)/l:h dl:t)dz

z

K
Z p(mly1:t, di.t) / u(d, z, mlyr.t, di.e)p(z|d, m, y1:t, di.t)dz
m=1 z
m Then, need to find d that maximises u(d|yi.t, di:t)

m Hence, need to approximate or sample from a large number of
posterior distributions for different priors, designs and data

: . 2
m How can this be done efficiently? QuT
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SMC
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SMC for one static model m

m Sample from sequence of targets
m Data annealing here

Pt(9m|ma)/1:r, dl:t) = f(y1:t|m7 Qma dl:t)p(0m|m)/zm,t, for t = 1, ceey T.

y1.t (independent) data up to t, di.; design points up to t, O,
parameter for model m=1,..., K.

P(Y1:t|m, dl:t) = Zm,t = / f(}/1:t|m, 9m7 dl:t)p(9m|m)d9m-

m SMC: Generate a weighted sample (particles) for each target
in the sequence via steps

m Reweight: particles as data comes in (efficient)
m Resample: when ESS small QUT
m Mutation: diversify duplicated particles (can be efficient)
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SMC
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SMC for one static model m (algorithm) Chopin (2002)

m Have current particles {W/,0i} | based on data y1.:

Re-weight step to included y;1

W1 oc WiF(yes1|0h, desa).

m Check effective sample size: ESS = 1/ Z,{V:l(Wt"le)2

If ESS > E (e.g. E = N/2) go back to re-weight step for next
observation

m If ESS < E do the following

Resample proportional to weights. Duplicates good particles

Mutation: Move all particles via MCMC kernel say R times
(adaptive proposal)
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SMC
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SMC for multiple models

Effectively run an SMC algorithm for each model
m=1,...,K
= Have set of N particles for each model {W;,, ., 0}, .} ;.

m ESS for each model m

resampling and within-model updates when required

Design part: use data up to t, y1.¢, and particles of all models
to compute the next design diy1
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Del Moral et al (2006)

m It can be shown

Zt+1/Zt = f()/t+1|)/1:t, dt+1) = /ef()/t+1’97 dt+1)P(9|y1:t7 dl:t)d9-

m Using SMC particles to approximate posterior at t gives
estimator
N

YARSYPARS Z W{F(yes1|0, deg)-
i=1
m Can then obtain approximation of Z; ;1 through

Zii1 _ Zeyy Ze 4
2y Zy Z 1w 2oy

QUT
m Also gives estimate of posterior predictive probability of y;1
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SMC
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But what about random effects models?

m SMC requires the likelihood to be computed a large number
of times

m However, computing the likelihood can be difficult for random
effect models as, for example

F(y10, d) = / F(y10. 5, d)p(Blu Q)dP

m If model is nonlinear then generally analytically intractable
m Can be approximated

m Needs to be computationally efficient and unbiased

m SMC for random effects models?

m Efficient approximates of model evidence and predictive

probabilities of random effect models.... Qi
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SMC
°

Exact-Approximate SMC

m The (observed data) likelihood

1100.0) = [ (15,00, d)p(31u?. 2

m Can be estimated unbiasedly. For example, from McGree et.
al (2015), for each particle 6()

Q
, 1 N
Fy|oW, dy= = f(y|sY),00), d 1
(169, d) = & ,Z_; (vI8 ) (1)
where SU) ~ p(ut), Q) j=1,...,Q.
m SMC with unbiased estimate of likelihood — an
exact-approximate algorithm! (Duan and Fulop 2013)

m Andrieu and Roberts (2009) for MCMC and Tran et al. QuT
(2014) for importance sampling.
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Utility
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Bayesian A-optimality

For a single model, this can be achieved by maximising the
following:

u(d|y1:t7 dl:t) = 1/trace VAR[9|d,)/1:t, dl:t]~

This is extended to the case of K models by maximising the
inverse of the sum of the traces of the posterior variances for all K
models. That is,

K
u(d|yr:t, di:t) = 1/2 log trace VAR[0,|d, y1.¢, d1.e, M = 1].
=1

Other utilities are also available for parameter estimation (KLD,
Bayesian D-optimality, etc). Qur
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Utility
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Utility estimation in sequential design

Expected utility of d is given by u(d|yi.t, di:t) =

K
Zp(m’y1:t7d1:t)/U(dazam’y1:t7d1:t)p(z‘m7 d7y1:t7d1:t)dz

m=1

For each /., simulate z,"mt. Then, MC integration yields:

m,t
K N . .
u(db/l:ta dl:t) ~ Z P(m|Y1:t, dl:t) Z ermtu(da Zr’-n7ta m|y1:t> dl:t)-
m=1 i=1

The u(d,z,"mt7 m|y1.¢, d1.¢) is evaluated via importance sampling

where z}, . (and d) are supposed observed data. QuT
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Example
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Application - Pharmacokinetics

During infusion

After infusion

Figure: One compartment infusion model
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Example
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One compartment infusion - Pharmacokinetics

m For subject t with design di = (dit, dat), define

Ye ~ MVN(g(Btadt)75/)7
Bt ~ MVN(M7Q)a

m Here (; is random effect for tth subject

b ﬁ(l — exp(—kd;)), for d; < Tinf

— Tinf
g(Bt, dr) = { Tﬁfﬁ(l — exp(—k¢ Tinf)) exp(—k(t — Tinf)), else

where (k¢, vi) = exp(Bt + 1)

Priors: o~ MVN(0,X), for ¥ known.
Q ~ InvWish(V,v), for ¥ and v known

log & ~ N(a, b), for a and b known,
(ell] )

m Design objective is to learn about parameters: 6 = (i, ,9).
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One compartment infusion - Pharmacokinetics
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Figure: Prior predictive plot for one-compartment infusion model
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Example
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One compartment infusion - Pharmacokinetics

m Computationally expensive to implement search algorithm.

m Consider discretised design space (mins since start of infusion
of length Tinf = 30 mins):

[ 6 15
15 30
30 45
45 60
60 120

120 180

180 240

240 300

300 360

m Design is found via Bayesian A-optimality and random design. e
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One compartment infusion - Pharmacokinetics
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Figure: Selected A-optimal designs for one-compartment infusion model
in simulation study.
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One compartment infusion - Pharmacokinetics

Figure: Utility values for the 500 simulated trials for the A-optimality and
random utility.
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Conclusion

Discussion

m Developed a framework to efficiently undertake Bayesian
design in PK settings

m Framework is highly computational - GPU made this work
possible in a reasonable amount of time

m Also considered design for 1cpt and 2cpt models (not shown
here)

m Framework should be useful in general sequential setting
(GLMMs)?
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Related and future work
Related Bayesian design work

MCMC framework
m The so called ‘Mueller algorithm’ (Mueller, 1999) with
extensions (Amzal et al., 2006)
m GLMs (Weir, et al., 2007 and McGree et al., 2012)
m Accelerated life test (Weaver et al., 2016)
SMC framework
m Estimation for GLMs (Drovandi, McGree and Pettitt, 2013,
Azadi et al., 2014)
m Model discrimination for GLMs and GNLMs (Drovandi,
McGree and Pettitt, 2014)
m Model discrimination and estimation for GLMs and GNLMs
(McGree, 2016)
ABC framework
m Intractable likelihoods (Drovandi and Pettitt, 2014, Price et QuT
al., 2016)
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Related and future work

Future Bayesian design

Further extensions to mixed effects settings

m Model discrimination?

m Dual purpose designs - model discrimination and estimation?

Static designs (high dimensional problems)

m Need fast search algorithms - ACE (Overstall and Woods,
2015)?

m Need fast posterior approximations - Expectation propagation
(Minka, 2005), Variational approximations (Nott et al. ,

2013)?
QuT
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