Bayesian sequential design in pharmacokinetics

James McGree Queensland University of Technology james.mcgree@qut.edu.au

Collaborators: Chris Drovandi, Gentry White, Tony Pettitt Acknowledgements: Australian Research Council Discovery Grant

20th June, 2016

Bayesian design problem

- Usually quantify experimental goals via a utility function u(d)
- Optimal design can be expressed as

$$d^* = \arg \max_{d \in \mathcal{D}} \int u(d, z) p(z|d) dz,$$

$$d^* = \arg\max_{d \in \mathcal{D}} \sum_{m=1}^K p(m) \int u(d, z, m) p(z|m, d) dz$$

Why do this to ourselves?

- Why make a difficult problem more difficult?
- What is FO, FOCE, nonlinearity?
- Appropriate to design under the planned estimation framework
- Model and parameter uncertainty are most rigoriously handled within Bayesian framework
- Inference framework more appropriate for complex models
- Wider variety of useful criteria/utility functions, for example, for model choice (mutual information)

Bayesian sequential design

- Adaptive decisions as new data are collected
- More robust to parameter and model uncertainty
- Natural to use Bayesian framework. Posterior becomes new prior
- Next decision obtained by looking forward to all future decisions (backward induction)
- Simplified by myopic design (one-at-a-time)
- Next design point $d_{t+1} = \arg \max U(d|y_{1:t}, d_{1:t})$. $y_{1:t}$ collected data at design $d_{1:t}$. U is utility function

Computational difficulties

■ In sequential design, one needs to evaluate $u(d|y_{1:t}, d_{1:t})$

$$\int_{z} u(d,z|y_{1:t},d_{1:t})p(z|d,y_{1:t},d_{1:t})dz$$

$$\sum_{m=1}^{K} p(m|y_{1:t}, d_{1:t}) \int_{z} u(d, z, m|y_{1:t}, d_{1:t}) p(z|d, m, y_{1:t}, d_{1:t}) dz$$

- Then, need to find d that maximises $u(d|y_{1:t}, d_{1:t})$
- Hence, need to approximate or sample from a large number of posterior distributions for different priors, designs and data
- How can this be done efficiently?

SMC for one static model m

- Sample from sequence of targets
- Data annealing here

$$p_t(\theta_m|m, y_{1:t}, d_{1:t}) = f(y_{1:t}|m, \theta_m, d_{1:t})p(\theta_m|m)/Z_{m,t}, \text{ for } t = 1, \dots, T.$$

 $y_{1:t}$ (independent) data up to t, $d_{1:t}$ design points up to t, θ_m parameter for model $m = 1, \dots, K$.

$$p(y_{1:t}|m,d_{1:t}) = Z_{m,t} = \int f(y_{1:t}|m,\theta_m,d_{1:t})p(\theta_m|m)d\theta_m.$$

- SMC: Generate a weighted sample (particles) for each target in the sequence via steps
 - Reweight: particles as data comes in (efficient)
 - Resample: when ESS small
 - Mutation: diversify duplicated particles (can be efficient)

SMC for one static model m (algorithm) Chopin (2002)

- Have current particles $\{W_t^i, \theta_t^i\}_{i=1}^N$ based on data $y_{1:t}$
- Re-weight step to included y_{t+1}

$$W_{t+1}^i \propto W_t^i f(y_{t+1}|\theta_t^i, d_{t+1}).$$

- Check effective sample size: $ESS = 1/\sum_{i=1}^{N} (W_{t+1}^{i})^{2}$
- If ESS > E (e.g. E = N/2) go back to re-weight step for next observation
- If ESS < E do the following
- Resample proportional to weights. Duplicates good particles
- Mutation: Move all particles via MCMC kernel say *R* times (adaptive proposal)

SMC for multiple models

- Effectively run an SMC algorithm for each model m = 1, ..., K
- Have set of N particles for each model $\{W_{m,t}^i, \theta_{m,t}^i\}_{i=1}^N$.
- ESS for each model m
- resampling and within-model updates when required
- Design part: use data up to t, $y_{1:t}$, and particles of all models to compute the next design d_{t+1}

SMC Estimate of Evidence Del Moral et al (2006)

It can be shown

$$Z_{t+1}/Z_t = f(y_{t+1}|y_{1:t},d_{t+1}) = \int_{\theta} f(y_{t+1}|\theta,d_{t+1}) p(\theta|y_{1:t},d_{1:t}) d\theta.$$

 Using SMC particles to approximate posterior at t gives estimator

$$Z_{t+1}/Z_t \approx \sum_{i=1}^{N} W_t^i f(y_{t+1}|\theta_t^i, d_{t+1}).$$

■ Can then obtain approximation of Z_{t+1} through

$$\frac{Z_{t+1}}{Z_0} = \frac{Z_{t+1}}{Z_t} \frac{Z_t}{Z_{t-1}} \cdots \frac{Z_1}{Z_0}.$$

lacktriangle Also gives estimate of posterior predictive probability of y_{t+1}

But what about random effects models?

- SMC requires the likelihood to be computed a large number of times
- However, computing the likelihood can be difficult for random effect models as, for example

$$f(y|\theta,d) = \int f(y|\theta,\beta,d)p(\beta|\mu,\Omega)d\beta$$

- If model is nonlinear then generally analytically intractable
- Can be approximated
- Needs to be computationally efficient and unbiased
- SMC for random effects models?
- Efficient approximates of model evidence and predictive probabilities of random effect models....

Exact-Approximate SMC

■ The (observed data) likelihood

$$f(y|\theta^{(i)},d) = \int f(y|\beta,\theta^{(i)},d)p(\beta|\mu^{(i)},\Omega^{(i)})d\beta$$

■ Can be estimated unbiasedly. For example, from McGree et. al (2015), for each particle $\theta^{(i)}$

$$f(y|\theta^{(i)},d) = \frac{1}{Q} \sum_{j=1}^{Q} f(y|\beta^{(j)},\theta^{(i)},d)$$
 (1)

where $\beta^{(j)} \sim p(\mu^{(i)}, \Omega^{(i)}), \quad j = 1, \dots, Q.$

- SMC with unbiased estimate of likelihood → an exact-approximate algorithm! (Duan and Fulop 2013)
- Andrieu and Roberts (2009) for MCMC and Tran et al. (2014) for importance sampling.

Bayesian A-optimality

For a single model, this can be achieved by maximising the following:

$$u(d|y_{1:t}, d_{1:t}) = 1/\text{trace VAR}[\theta|d, y_{1:t}, d_{1:t}].$$

This is extended to the case of K models by maximising the inverse of the sum of the traces of the posterior variances for all K models. That is,

$$u(d|y_{1:t}, d_{1:t}) = 1/\sum_{l=1}^{K} \log \operatorname{trace} VAR[\theta_{l}|d, y_{1:t}, d_{1:t}, M = l].$$

Other utilities are also available for parameter estimation (KLD, Bayesian D-optimality, etc).

Utility estimation in sequential design

Expected utility of d is given by $u(d|y_{1:t}, d_{1:t}) =$

$$\sum_{m=1}^{K} p(m|y_{1:t}, d_{1:t}) \int_{z} u(d, z, m|y_{1:t}, d_{1:t}) p(z|m, d, y_{1:t}, d_{1:t}) dz$$

For each $\theta^i_{m,t}$, simulate $z^i_{m,t}$. Then, MC integration yields:

$$u(d|y_{1:t},d_{1:t}) \approx \sum_{m=1}^{K} p(m|y_{1:t},d_{1:t}) \sum_{i=1}^{N} W_{m,t}^{i} u(d,z_{m,t}^{i},m|y_{1:t},d_{1:t}).$$

The $u(d, z_{m,t}^i, m|y_{1:t}, d_{1:t})$ is evaluated via importance sampling where $z_{m,t}^i$ (and d) are supposed observed data.

Application - Pharmacokinetics

Figure: One compartment infusion model

One compartment infusion - Pharmacokinetics

■ For subject t with design $d_t = (d_{1t}, d_{2t})$, define

$$y_t \sim MVN(g(\beta_t, d_t), \delta I),$$

 $\beta_t \sim MVN(\mu, \Omega),$

■ Here β_t is random effect for tth subject

$$g(\beta_t, d_t) = \begin{cases} \frac{D}{Tinf} \frac{1}{k_t v_t} (1 - \exp(-kd_t)), \text{ for } d_t \leq Tinf \\ \frac{D}{Tinf} \frac{1}{k_t v_t} (1 - \exp(-k_t Tinf)) \exp(-k(t - Tinf)), \text{ else} \end{cases}$$
where $(k_t, v_t) = \exp(\beta_t + \mu)$

Priors: $\mu \sim MVN(0, \Sigma)$, for Σ known. $\Omega \sim InvWish(\Psi, \nu)$, for Ψ and ν known $\log \delta \sim N(a, b)$, for a and b known,

■ Design objective is to learn about parameters: $\theta = (\mu, \Omega, \delta)$.

One compartment infusion - Pharmacokinetics

Figure: Prior predictive plot for one-compartment infusion model

One compartment infusion - Pharmacokinetics

- Computationally expensive to implement search algorithm.
- Consider discretised design space (mins since start of infusion of length *Tinf* = 30 mins):

■ Design is found via Bayesian A-optimality and random design.

One compartment infusion - Pharmacokinetics

Figure: Selected A-optimal designs for one-compartment infusion model in simulation study.

One compartment infusion - Pharmacokinetics

Figure: Utility values for the 500 simulated trials for the A-optimality and random utility.

Discussion

- Developed a framework to efficiently undertake Bayesian design in PK settings
- Framework is highly computational GPU made this work possible in a reasonable amount of time
- Also considered design for 1cpt and 2cpt models (not shown here)
- Framework should be useful in general sequential setting (GLMMs)?

Related Bayesian design work

MCMC framework

- The so called 'Mueller algorithm' (Mueller, 1999) with extensions (Amzal et al., 2006)
- GLMs (Weir, et al., 2007 and McGree et al., 2012)
- Accelerated life test (Weaver et al., 2016)

SMC framework

- Estimation for GLMs (Drovandi, McGree and Pettitt, 2013, Azadi et al., 2014)
- Model discrimination for GLMs and GNLMs (Drovandi, McGree and Pettitt, 2014)
- Model discrimination and estimation for GLMs and GNLMs (McGree, 2016)

ABC framework

 Intractable likelihoods (Drovandi and Pettitt, 2014, Price et al., 2016)

Future Bayesian design

Further extensions to mixed effects settings

- Model discrimination?
- Dual purpose designs model discrimination and estimation?

Static designs (high dimensional problems)

- Need fast search algorithms ACE (Overstall and Woods, 2015)?
- Need fast posterior approximations Expectation propagation (Minka, 2005), Variational approximations (Nott et al., 2013)?

Key References

- Andrieu and Roberts (2009). Annals of Statistics, 37, 697-725.
- Chopin (2002). *Biometrika*, **89**:539-551.
- Drovandi, McGree, and Pettitt (2014). Journal of Computational and Graphical Statistics, 23:3-24.
- Drovandi, McGree, and Pettitt (2013). Computational Statistics & Data Aanalysis, 57:320-335.
- Del Moral, Doucet and Jasra (2006). Journal of the Royal Statistics Society: Series B, 68:411-436.
- McGree et al. (2012). Journal of Statistical Planning and Inference, 142, 1480-1492.
- McGree, White, Drovandi, and Pettitt (2015). Statistics and Computing. To appear.
- McGree (2016). Computational Statistics & Data Analysis. Accepted for publication.
- Nott et al . (2013). ArXiv:1307.7962 [stat.ME]
- Overstall and Woods (2015) ArXiv:1501.00264 [stat.ME]
- Tran et al. (2014). ArXiv:1402.6035 [stat.ME]

