

Robust design in model-based analysis of longitudinal clinical data

Giulia Lestini, Sebastian Ueckert, France Mentré IAME UMR 1137, INSERM, University Paris Diderot, France PODE, June 20 2016

Institut national de la santé et de la recherche médicale

Infection • Antimicrobials • Modelling• Evolution

Optimal design in Nonlinear Mixed Effects Models (NLMEM)

Choosing a good design for a planned study is essential

- Number of subjects
- Number of sampling times for each subject
- Sampling times (allocation in time)
- Optimal design depends on prior information (model and parameters)
 - Adaptive design
 - Robust design (robustness on parameters)

Objectives

- To compare various robust design criteria in NLMEM for two examples:
 - Pharmacokinetic/Pharmacodynamic (PKPD) model with continuous data
 - Longitudinal binary model using a new method for the evaluation of the Fisher information matrix (FIM) for NLMEM with discrete data

Basic mixed effect model

- Individual model (one continuous response)
 - $y_i = f(\phi_i, \xi_i) + \varepsilon_i$ vector of n_i observations
 - ξ_i : individual sampling times $t_{ij} = 1, ..., n_i$
 - ϕ_i : individual parameters (size p)
 - *f*: nonlinear function defining the structural model
 - ε_i : gaussian zero mean random error
 - var $(\varepsilon_i) = \text{diag}((\sigma_{inter} + \sigma_{slope}f(\phi_i, \xi_i))^2)$ combined error model

Random-effects model

- $\phi_i = \mu \times \exp(b_i)$ or $\mu + b_i$
- $b_i \sim N(0, \Omega)$ here Ω diagonal: $\omega_k^2 = Var(b_{ik})$

Population parameters: Ψ (size P)

- μ (fixed effects)
- unknowns in Ω (variance of random effects)
- σ_{inter} and/or σ_{slope} (error model parameters)

Basic population design

Assumption

- N individuals *i*
- same elementary design ξ in all N subjects ($\xi_i = \xi$)

with t_1, \ldots, t_n sampling times

- $n_{tot} = N \times n$
- Population design
 - $\Xi = \{\xi, N\}$

Fisher Information Matrix (FIM) in NLMEM

- Elementary FIM: $M_F(\Psi, \xi) = E\left(\frac{-\partial^2 L(y;\Psi)}{\partial \Psi \partial \Psi^T}\right)$
- No analytical expression for FIM
 - Continuous data \rightarrow FO approximation
 - $_{\circ}$ M_{F} is implemented in the R function « PFIM »¹

- M_F is implemented in an R program.
- Population FIM for one group design

 $M_F(\Psi, \Xi) = N \times M_F(\Psi, \xi)$

• Standard D- criterion: $|M_F(\Psi, \Xi)|^{1/P}$ where $\Psi = \Psi^*$ (fixed values)

^I <u>www.pfim.biostat.fr</u>

²Ueckert S, Mentré F. Computational and Methodological Statistics (CMStatistics). 2015

³Ueckert S, Mentré F. Population Optimum Design of Experiments (PODE). 2015

Criteria for optimal robust designs

Method

• For robust design, a distribution for Ψ , $p(\Psi)$, is assumed

Optimal robust designs		Criteria
ξ _{DE}	-	$ \mathrm{E}_{\Psi}(M_F(\Psi,\xi)) $
ξ_{ED}		$\mathrm{E}_{\Psi} M_F(\Psi,\xi) $
$\xi_{\rm EID}$	= argmax	$(E_{\Psi} M_F(\Psi,\xi) ^{-1})^{-1}$
ξ_{ELD}	ξ	$\mathbb{E}_{\Psi}[log M_F(\Psi,\xi)]$
ξ _{MM}		$min_{\Psi} M_F(\Psi,\xi) $

Criteria for robust optimal designs

- Criteria are computed by Monte Carlo simulations (MC)
- K=Total number of MC samples

Method

Outline

Part I

Comparison of robust design criteria in NLMEM with continuous data

Designs were evaluated using

- (i) D-criterion and predicted Relative Standard Errors (RSE)
- (ii) Relative Root Mean SquaredErrors (RRMSE) derived fromClinical Trial Simulations (CTS)

Part 2

Comparison of robust design criteria in NLMEM with discrete data (NEW way to compute FIM)

Designs were evaluated using

(i) D-criterion and predicted Relative Standard Errors (RSE)

Objectives

- To compare various robust design criteria in NLMEM for two examples:
 - Pharmacokinetic/Pharmacodynamic (PKPD) model with continuous data
 - Longitudinal binary model using a new method for the evaluation of the Fisher information matrix (FIM) for NLMEM with discrete data

Part I - Example: PKPD model with continuous data

2 responses model, for a biomarker in oncology $(TGF - \beta)$

PK: concentration

$$f_{PK}(\phi, t) = \frac{DOSE}{V} \frac{k_a}{k_a - k} \left(e^{-kt} - e^{-k_a t} \right),$$
$$k = \frac{CL}{V}$$

Parameters: k_a , V, CL

PD: relative inhibition of TGF- β

$$\frac{df_{PD}(\phi,t)}{dt} = k_{out} \frac{I_{max} \cdot f_{PK}(\phi,t)}{f_{PK}(\phi,t) + IC_{50}} - k_{out} \cdot f_{PD}(\phi,t),$$

$$I_{max} = 1$$

Parameters: k_{out} , IC_{50}

\Rightarrow The model is implemented in the DDMoRe model repository

Gueorguieva et al., Comput Methods Programs Biomed. 2007 Gueorguieva et al., Br J Clin Pharmacol. 2014 Bueno et al., Eur J Cancer. 2008 Lestini et al., Pharm Res. 2015

Part I - Example: PKPD model with continuous data

Single Dose 80 mg Concentration 0.2 0.4 0.6 Ψ 0.0 ⁵ ¹⁰ ¹⁵ ²⁰ Time (hours) Ó 0.5 Ψ 0.4 Inhibition 0.3 0.2 0.1 0.0 ⁵ ¹⁰ ¹⁵ ² Time (hours) Ó 20

PK Parameters	Ψ*	$p(\Psi)$
$\mu_{k_a}(h^{-1})$	2	2
μ_V (L)	100	100
$\mu_{CL}(Lh^{-1})$	10	10
ω_V^2	0.49	0.49
ω_{CL}^2	0.49	0.49
$\sigma_{slope,PK}$	0.2	0.2

PD Parameters	Ψ*	$p(\Psi)$
$\mu_{k_{out}}(h^{-1})$	0.2	$\log N(\log(0.2), 0.8^2)$
$\mu_{IC_{50}}(\text{mg/L})$	0.3	$\log N(\log(0.3), 0.8^2)$
$\omega_{k_{out}}^2$	0.49	0.49
ω_{IC50}^2	0.49	0.49
$\sigma_{inter,PD}$	0.2	0.2

Design optimization

- Constraints
 - N = 50 patients
 - n = 3 observations per patient
 - For PK, times fixed to 0.1, 4, 12 h
 - For PD, 3 sampling times among possible times: 1, 2, 3, 4, 6, 9, 10, 15, 22, 23, 24 h
 - $\Rightarrow \binom{11}{3} = 165$ elementary designs

FIM Computation

• FIM was computed in PFIM with FO approximation

Optimization

- Find the D-optimal design ξ_D using D-criterion for Ψ^*
- Find optimal robust designs ξ_{DE} , ξ_{ED} , ξ_{EID} , ξ_{ELD} , ξ_{MM} using MC with K=1000

Evaluation

• For each optimal design, and for a fixed equispaced design ξ_{ES} compute D-criterion and predicted RSE(%) for each set simulated parameters Ψ_k , k = 1, ..., K

D-criterion for optimal designs

Robust designsNon-Robust designs

Best design with highest median: ξ_{ELD}

Predicted Relative Standard Errors (RSE)

Robust designsNon-Robust designs

Predicted Relative Standard Errors (RSE)

Robust designs

Non-Robust designs

Method

For each design ξ

Compute Relative Root Mean Squared Error (RRMSE)

 $\xi = \xi_{DE}, \xi_{ED}, \xi_{EID}, \xi_{ELD}, \xi_{MM}, \xi_{D}, \xi_{ES}$

Parameter estimation: SAEM algorithm in MONOLIX 4.3

5 chains, initial estimates: Ψ^*

Relative Root Mean Squared Errors (RRMSE)

Results

• = Means across parameters of RRMSEs standardized to ξ_{ELD} RRMSEs

Conclusion (Part I)

- All criteria led to various designs rather different
- ξ_{ELD} performed globally the best in terms of median of D-criteria across the 1000 MC simulations
- RRMSE obtained from the CTS study confirm the results, showing ξ_{ELD} being globally the more robust design of the 1000 simulations

Objectives

- To compare various robust design criteria in NLMEM for two examples:
 - Pharmacokinetic/Pharmacodynamic (PKPD) model with continuous data
 - Longitudinal binary model using a new method for the evaluation of the Fisher information matrix (FIM) for NLMEM with discrete data

Part 2 - Example: NLMEM with binary data

- Logistic model for repeated binary response with treatment increasing the slope of the logit of the response with time
- logit(π) = $\beta_1 + \beta_2(1 + \mu_3 \delta)t$

where $\beta = g(\mu, b) = \mu + b$;

- π is the probability of success
- **2** treatment groups ($\delta = 0 \& \delta = 1$)

Parameters	Ψ*	<i>p</i> (Ψ)
μ_1	-2	-2
μ_2 (months)	0.09	$N(0.09, 0.2^2)$
μ_3	5	$N(5, 2^2)$
ω_1^2	0.49	0.49
ω_2^2 (months)	0.3	0.3

Design optimizationConstraints

- $N = N_T$ (treatment) + N_C (control) = 100 patients
- n = 4 observations per patient including 0 and 12 months
- Possible intermediate times: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 months
- $\Rightarrow \binom{11}{2} = 55$ elementary designs (first and last times are fixed)

FIM Computation

• FIM was computed with the new method by Ueckert and Mentré, 2015, based on AGQ and QRMC, with 3 nodes and 500 integrations samples

Optimization

- Find the D-optimal design ξ_D using D-criterion for Ψ^*
- Find optimal robust designs ξ_{DE} , ξ_{ED} , ξ_{EID} , ξ_{ELD} , ξ_{MM} using MC with K=1000

Evaluation

• For each optimal design, and for a fixed equispaced design ξ_{ES} compute Dcriterion and predicted RSE(%) for each set simulated parameters Ψ_k , $k = 1, ..., K_{22}$

D-criterion distribution for selected designs

Robust designsNon-Robust designs

Best designs with highest median: ξ_{EID} and ξ_{ELD}

Whiskers of boxplot: 10th and 90th percentiles

Results

Predicted Relative Standard Errors (RSE)

Robust designsNon-Robust designs

Results

Predicted Relative Standard Errors (RSE)

Robust designsNon-Robust designs

ts

Conclusion (Part 2)

- The evaluation of FIM with the new approach is rather fast, allowing for the first time robust design optimization for discrete longitudinal models
- From median of 1000 simulated D-criteria, ξ_{ELD} and ξ_{EID} performed globally the best
- ξ_{ES} has efficiency of 0.82 compare to ξ_D . When prior uncertainty is assumed, the efficiency is 0.66 compared to ξ_{ELD}

- All these robust criteria were never systematically compared in NLMEM
- Different criteria led to various optimal designs, with different impact on predicted RSE
- From median of 1000 simulated D-criteria
 - For PKPD model: ELD led to the best designs
 - For longitudinal binary model: ELD and EID led to the best designs (which are very close)

Perspectives

- Perform CTS for binary data example (Part 2)
- Perform robust and adaptive design
- Perform model averaging

Conclusion

Thank you for your attention !

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115156, resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. The DDMoRe project is also financially supported by contributions from Academic and SME partners

Back-up

29

Criteria for robust optimal designs

• For robust design, a distribution for Ψ , $p(\Psi)$, is assumed

Optimal designs		Criteria	Compute Criteria
ξ_{DE}	-	$\left \mathrm{E}_{\Psi} \left(M_F(\Psi, \xi) \right) \right $	$\left \frac{1}{K}\sum_{k=1}^{K} (M_F(\Psi_k,\xi))\right $
ξ_{ED}		$\mathbb{E}_{\Psi} M_F(\Psi,\xi) $	$\frac{1}{K}\sum_{k=1}^{K} M_{F}(\Psi_{k},\xi) $
ξ_{EID}	= argmax ξ	$(\mathbf{E}_{\Psi} M_{F}(\Psi,\xi) ^{-1})^{-1}$	$\left(\frac{1}{K}\sum_{k=1}^{K} M_{F}(\Psi_{k},\xi) ^{-1}\right)^{-1}$
ξ_{ELD}		$\mathrm{E}_{\Psi}[log M_F(\Psi,\xi)]$	$\frac{1}{K} \sum_{k=1}^{K} log M_F(\Psi_k, \xi) $
ξμμ		$min_{\Psi} M_F(\Psi,\xi) $	$min_{k(k=1,\dots K)} M_F(\Psi_k,\xi) $