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Introduction

@ Parameter estimation in nonlinear mixed effect models
(NLMEM) :
e Population parameters : by Maximum Likelihood approach
o Individual parameters : by Bayesian approach

@ Design evaluation and optimisation

o Individual Fisher information matrix (IFIM) : for individual
regression

o Population Fisher information matrix (PFIM) 1 : for analysis
with NLMEM, implemented in several design software? based
on first-order linearization (FO)

o Individual bayesian information matrix (iBIM)3 : for bayesian
individual estimation, based on FO 4>

Mentré et al. (1997). Biometrika.

Nyberg et al. (2014). Br J Clin Pharmacol.
Merlé et al. (1995). J Pharmacokinet Biopharm.
Combes et al. (2013). Pharm Res.

PFIM 4.0. www.pfim.biostat.fr.
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Introduction

Limitations of FO :
@ High nonlinearity
@ High variability + sparse design
@ Discrete data

Alternatives proposed :
e For PFIM :
o Laplace & MC?,
o Adaptive Gaussian Quadrature”,
o MCMC-based approach® implemented in R package
MIXFIM 0 using Stan 1!

e For iBIM : MC-based approach
Nyberg et al. (2009). PAGE meeting.
Nguyen et al. (2014). Computational Statistics & Data Analysis.
Ueckert et al. (2016). Computational Statistics & Data Analysis.
Riviere et al. (2016). Biostatistics.
https ://cran.r-project.org/web/packages/MIXFIM/
Stan Development Team. http ://mc-stan.org
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Objectives

@ To evaluate an approach based on Monte-Carlo (MC) to
compute the iBIM :

e on a pharmacokinetic (PK) model
e on a model for count data
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NLMEM : Notations

For continuous data : For discrete data :
yi = f(g(u, bi), &) + e plyilbi) = [}y h(yi, g (ks bi), &)

with
Vi = (¥i1,---,Yin;) " response for individual i (i = 1,..., N)
f, h structural model
& elementary design for subject i
0; = g(u, b;i) individual parameters vector
1 vector of fixed effects
b; vector of random effects for individual i, b; ~ N(0,Q)

e; vector of residual errors, €; ~ N(0,X) and X diagonal
matrix

p(yilbi) = N(f,X)
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Expression of the iBIM

The individual bayesian information matrix can be expressed as :

EME) — E, (Ey,»|b,- (8Iog(§t()f7i|yf')) 8Iog(%(§i|yf'))r)>

— £ (1 ( 2EP1E) alog(p(y,wb,-)f)) 6, (2estote) alog(p(b,-)ﬁ)

Ob; Ob; Ob; Ob;
dlog(p(bi)) log(p(bi))"
— B (Mg, b)) + £, (AP 10EE(b))
Individual
information Prior information
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Expression of the bayesian individual information matrix

ob; Ob;

BIM(S) = En (Mie(g(p b).€)) + s (8'°g(”“"” a'°g(”(’"‘”T>

Individual
information Prior information

The first expectation :
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Expression of the bayesian individual information matrix

dlog(p(b1)) alog(p(b:))T>

BIM(E) = Ex (Mrlg(u 5),6)) + £, ( 2SE0D Dloslol

Individual
information Prior information

The first expectation :
@ Can be approximated by FO as M;e(g(u,0),&;)
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Expression of the bayesian individual information matrix

BIM(E) = B (Mie(g 1, 5). ) + By ( 21°8E1oD oslp(B)))

Individual
information Prior information

The first expectation :

@ Can be approximated by FO as M;e(g(u,0),&;)
@ Can be evaluated by MC :

Eb,- (M”__( (M7 b) fl)) _ hyl (a(log(p(yi‘bi))) 8(|og(p(y,|b,)))>

Ob; ob;,

:u \

" 9 (log(p(yir|bi.r))) O (log(P(yi.|bir)))
jg:; Obi « 0bi,

where (b; s, yir)r=1,..r is a R-sample of the joint distribution
of (bi, yi).
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Expression of the bayesian individual information matrix

dlog(p(bi)) dlog p(bi))" )

iBIM(&:) = Eb, (Mir(g (1 abi)vfi))JFEb;( ob; ob;

Individual
information Prior information

Second expectation :

MC-based evaluation

Ebl_(alog(p( i) Olog p(b > Rzal<>g(p i.r)) Olog(p(bi,r))

ob, 8b Ob; k ob;

where (b;j ,)r=1,. r is a R-sample of the marginal prior distribution
of b,'.
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Expression of the bayesian individual information matrix

dlog(p(bi)) dlog p(bi))" )

iBIM(&:) = Eb, (Mir(g (1 abi)vfi))JFEb;( ob; ob;

Individual
information Prior information

Second expectation :

MC-based evaluation

Ebl_<8|0g(P( i) Olog p(b > RZB|0g(p i.r)) Olog(p(bi,r))

0b 8b b « ob;

where (b;j ,)r=1,. r is a R-sample of the marginal prior distribution
of b,'.

Normal random effects

, <8|og(p(bi)) alogp(bf))T) _ o

ob; Ob;
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Implementation in R

MC-based approach : implemented in R based on functions of rstan
package :

e Monte Carlo (MC) sampler to sample in posterior distributions

@ Calculation of the gradient of the log probability function
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Continuous example” : PK Warfarin

One compartment model with first order absorption and
elimination :
70 K
F((Kay V, CL), 8) = & —2r (ef%f . e*Kaf)

VK,— <

@ Fixed effects :
(1tkas pov, per) = (1.00,8.00,0.15)

@ Exponential random effects with :
(wka, wv,wer) = (0.3,0.3,0.3)

@ Residual error : X(g(u, bi), &) =
diag((ointer + Osiopef (0, 5))2)

response.

12. Nyberg et al. (2014). British Journal of Clinical Pharmacology.
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Continuous example” : PK Warfarin

One compartment model with first order absorption and
elimination :

K, a
(Ko, V, CL), ¢) = 10 _Ka (e—Cva - e—Kaf)

2 error models :

@ Proportional residual error :

Ointer = 0 and Oslope = 0.1

@ Additive residual error : gipter = 1

and Ogope =0

response
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Continuous example” : PK Warfarin

One compartment model with first order absorption and
elimination :

response

f((Ks V,CL), t) = n

cL
&y Kt
o (e e

2 error models :

@ Proportional residual error :

Ointer = 0 and Oslope = 0.1

@ Additive residual error : gipter = 1

and Ogope =0

with 2 designs :

@ Rich :

¢ =(05,1,2,6,24,36,72,120)

o Sparse (optimal design for proportional

error, obtained with FO)

f = (0~57 120) 14/22



Discrete example ” : Poisson model

The observations are repeated counts for each patient at different
dose levels. The probability of each count was modeled using a
Poisson distribution :

A A . d
P(y = k|b) = e’Z’!( ) with log(}) = 6 (1— d+92>
where

@ 3-dose-levels design : £ = (0,0.4,0.7) with 30 observations per
subject per dose

o Fixed effects : (u1,12) = (1,0.5)
@ Exponential random effects with : (w1, w>) = (0.3,0.3)

7. Riviere et al. (2016). Biostatistics.
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Methods

Comparison of standard errors for estimation of random effects b; :
@ FO : predicted standard error pSEFo

@ MC : predicted standard error pSEpc
e with clinical trial simulation (CTS) :
e Simulation of one dataset with 500 subjects using R
o Estimation of b as the mean of the a posteriori distribution b|y
using Stan (with 200 iterations and 500 burns)
o Computation of SEcts as the standard deviation of the a
posteriori distribution bly
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Results : PK Warfarin model with proportional error

w=0.3
Method Random pPSE_MC | pSE_MC | pSE_MC pSE_MC
factor 5000 iter 10000 | 20000 iter 100000
iter iter
Rich Ka 0.12 0.12 0.12 0.12
design \i 0.05 0.06 0.05 0.05
(n=8) cL 0.04 0.04 0.04 0.04
Sparse Ka 0.19 0.19 0.20 0.20
Design Vv 0.14 0.14 0.14 0.14
{n=2) CL 0.10 0.10 0.10 0.10
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Results : PK Warfarin model with proportional error

w=0.3
Method Random pPSE_MC | pSE_MC | pSE_MC pSE_MC
factor 5000 iter 10000 | 20000 iter 100000
iter iter
Rich Ka 0.12 0.12 0.12 0.12
design \i 0.05 0.06 0.05 0.05
(n=8) cL 0.04 0.04 0.04 0.04
Sparse Ka 0.19 0.19 0.20 0.20
Design Vv 0.14 0.14 0.14 0.14
{n=2) CL 0.10 0.10 0.10 0.10
Rich design Sparse design
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Results : PK Warfarin model with additive error

SEln
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Results : Poisson model

SE/o
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Discussion

@ Alternative to FO, based on MC, to compute the iBIM
e Adapted for continuous and discrete models
e No model linearization
o Agreement with clinical trial simulation results

@ Work in progress

e Evaluation with higher inter-individual variability
e Evaluation of the uncertainty on the estimation of the iBIM
e R package on CRAN
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