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In-vitro pharmacokinetic experiments

In checking for drug-drug interactions, we check for enzyme
activity of human liver microsome (HLM) samples.

Samples are available from a number (e.g. 47) of subjects (or
donors).

Donors vary and we can consider those used as a sample from the
general population.

We also have covariate information on them, namely activities for
six cytochrome P450 enzymes. Typically one or two of these will
have a large effect on the activity depending on the substrate
being studied.



Modelling enzyme activity

We are interested in the variance between subjects, as well as the
Michaelis constant and the covariate effects.

The design problem is to choose donors and substrate
concentrations for each run. Standard is two replicates of each
combination of 9 contentrations with all 47 donors.

We need to model the activity as a function of substrate
concentration and covariate levels, also estimating donor to donor
variance and allowing for run to run variance. How should we build
a realistic model and estimate its parameters?

Simple additive errors might not be reasonable.



Transform-both-sides Model

Y (λ) =

(
Vx

K + x

)(λ)

+ ε,

where

z(λ) =

{
zλ, λ 6= 0;

log λ, λ = 0

and ε ∼ N(0, σ2) (Ruppert, Cressie and Carroll, 1989).

λ is an extra parameter. Estimate by maximum likelihood?

Data from experimental studies create problems and opportunities.



Transform-both-sides Model

Y (λ) =

(
Vx

K + x

)(λ)

+ ε,

where

z(λ) =

{
zλ, λ 6= 0;

log λ, λ = 0

and ε ∼ N(0, σ2) (Ruppert, Cressie and Carroll, 1989).

λ is an extra parameter. Estimate by maximum likelihood?

Data from experimental studies create problems and opportunities.



Typical Data
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What is wrong with the basic model?
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What is happening?

By eye, it is difficult to tell if:

I V is wrong (and σ2 is large);

I σ2 increases with E (Y ); or

I the systematic part of the model should be V1x
K1+x + V2x

K2+x .

Unfortunately, likelihood methods don’t do much better.

The likelihood is flat, with near optimal solutions at:

I λ = 1, V2 = 0, large V1 and large σ2;

I λ = −1, V2 = 0 and V1 = 200;

I λ = 1, V1 = 200 and V2 = 80.
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The Beauty of Replicated Designs

The parameters λ and σ2 are unrelated to the systematic part of
the model and tell us only about the relationship between the
variance and the expectation. We can estimate them robustly
without relying on assumptions about the systematic part of the
model.

The levels of substrate concentration are treatments and we can
estimate λ and σ2 from the full treatment model:

Y
(λ)
i(r) = µ+ τr + εi ,

where Yi(r) is the response from run i , which has treatment r
applied. This is just estimation of a Box-Cox transformation in a
one-way analysis of variance model.

We then estimate V and K by ML conditional on λ̂.

We call this the anova method.



The real beauty of the anova method

Since the first stage of the estimation is just transformation in
linear models, it extends trivially to:

I more complex nonlinear models, such as that for two binding
sites;

I models with other treatment factors in addition to substrate
concentration;

I block designs, row-column designs and any orthogonal block
structure;

I split-plot and other multi-stratum structures.

Blocking factor effects can be considered as fixed or random.



Mixed Treatment Models

Reminder: checking for drug-drug interactions, we check for
enzyme activity of human liver microsome samples.

Donors vary and we can consider those used as a sample from the
general population. We also have covariate information on them.

Model: Y
(λ)
ij =

(
Vixij
K+xij

)(λ)
+ εij , where lnVi ∼ N(µv , σ

2
v ),

µv = β0 + β1z1i + · · ·+ β6z6i .

The anova method works again, although the second stage fitting
involves a nonlinear mixed model.



Design optimality criterion

The design problem is to choose HLM and substrate concentration
for each run.

Initially look for locally optimal designs, which are optimal at point
prior estimates of the parameters.

To match the proposed analysis, we suggest a compound
optimality criterion

− logVa(λ̂) + log
∣∣∣M(β̂, K̂ , σ̂2V |λ = λ0)

∣∣∣ ,
where Va denotes the variance under the one-way anova model, M
is the information matrix for the nonlinear model given λ and λ0 is
the prior estimate of λ.



Design search

For large N, it is natural to find continuous optimal designs.

This fails, since M is not proportional to N.

Instead, for specific N, use a modified Fedorov algorithm to search
for optimal designs, i.e. start with a set of candidate support
points, choose a random design and then exchange points to
improve the design until convergence.

This imposes a major computational burden, e.g. the N = 846 of
the commonly used design is out of reach.



Some optimal design support points
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Optimal design for N = 200 with marginal replication
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Comparison with a rich design

We considered an 846-point rich design consisting of two replicates
of each point shown in grey in the plots.

The relative efficiencies of our optimal designs, and replicates of
them, to the rich design are compared.
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Conclusions

I The anova method is widely applicable, easy to compute and
has good properties.

I Its use is limited to replicated data and therefore to designed
experiments.

I It also focuses the data analyst’s attention on the design
structure.

I We can find designs which are better than standard designs,
but are limited by computing time.

I Research on design is continuing, e.g. pseudo-Bayesian
designs.

I Computation is the limiting factor in choosing big designs.


