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Power & design in non-linear mixed effect models

I Importance of design for precise parameter estimates should be
well known

I In late phase trials statistical power maybe more important
I For non-linear mixed effect models (NLMEMs), relationship

between parameter precision and statistical power maybe less
obvious



Objectives

I Derive different formulas for calculating power in NLMEMs
I Demonstrate practical application (R code)
I Evaluate the performance of methods



Non-linear mixed effect models

yij = f(g(θ, ηi, ai), tij) + h(g(θ, ηi, ai), tij , εij)

yij Observations j for subject i

θ Fixed effects

ηi Subject specific random effects (N(0,Ω))

ai Covariates

tij Observation times

εij Random variable describing the residual error (N(0,Σ))



Running Example - Alzheimer’s Disease Trial

I Evaluate novel treatment for Alzheimer’s disease (AD)
I Promising results in preclinic
I Want to perform phase IIb POC study
I AD disease progression model from literature



AD Trial - NLMEM

I Disease progression model for ADAS-cog score of subject i at
time j:

yij = S0i +αi(1−γ ·agi)tij +A
kr

kr − ko
(e−kotij −e−krtij )+εij

I Linear natural history
I Placebo effect according to inverse Bateman function
I Disease modifying drug effect (30%)
I Treatment group indicator agi

I Between subject model:

S0i = S0 + η1i αi = α+ η2i

I Fixed effect parameters

θ = (S0, α, γ,A, ko, kr)



AD Trial - Design

Proposed design:

I 12 months trial
I 2 arms (placebo & active)
I 50 subjects per arm
I 6 observations per subject (equally spaced)



AD Trial - Simulation

Median and 95% prediction interval
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Hypotheses tests

Elegant way of making decisions, e.g.

I Structural model building
I Covariate inclusion
I Drug effect testing

Often formulated in terms of parameters

H0 : θE = θ0
E H1 : θE 6= θ0

E

Define:

I Reduced model fr: model with θE = θ0
E

I Full model ff : model with unrestricted parameters



AD trial - Hypotheses

H0 : γ = 0 H1 : γ 6= 0

Full model:

yij = S0i + αi(1− γ · agi)tij +A
kr

kr − ko
(e−kotij − e−krtij ) + εij

Reduced model:

yij = S0i + αitij +A
kr

kr − ko
(e−kotij − e−krtij ) + εij



Wilk’s likelihood ratio statistic

Common metric to evaluate evidence against H0:

2 log L(θ̂E , y)
L(θ̂0

E , y)
= W

Generally, require considerable evidence against H0 (small type 1
error):

Pr (W ≥ c|H0) ≤ α

Often use:
Pr (W = w|H0) d−→ fχ2(k,w)

Take c as quantile from chi-square distribution



AD trial - Testing for a drug effect
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2 log L(θ̂E , y)
L(θ̂0

E , y)
= 2.54 < 3.84→ Not significant

(evaluated using FOCE in NONMEM)



Power

Citing Fisher

To consult the statistician after an experiment is finished
is often merely to ask him to conduct a post mortem
examination. He can perhaps say what the experiment
died of.

I H1 generally believed to be true
I Maybe even guess (θE) about true value

Before doing experiment, consider

Pr
(
W ≥ χ2

1,(1−α)|H1
)

= π



Calculating Power for NLMEMs

Pr
(
W ≥ χ2

1,(1−α)|H1
)

=

Pr
(

2 log L(θ̂E , y)
L(θ̂0

E , y)
≥ χ2

1,(1−α)|H1

)
=

1− FW (χ2
1,(1−α))

FW (χ2
1,(1−α)) seems complicated and dependent on the data

→ Monte Carlo simulations



Monte Carlo based power

1. Use Monte-Carlo simulations to generate y1, . . . , yM
2. Estimate all yi with full and reduced model → wi
3. Approximate FW (x) through the empirical distribution

function, i.e.

FW (x) = 1
n

n∑
i=1

1 {wi ≤ x}

4. Calculate power using πMC = 1− FW (χ2
1,(1−α))



AD trial - Monte Carlo based power

I Implemented AD model in NLMEM software (NONMEM)
I Simulated 500 datasets

I Estimated1 with full model
I Estimated with reduced model

I Calculated the log-likelihood ratios

load("../../data/dofv_mc_500.Rdata")
power.mc <- mean(dofv>=qchisq(0.95, 1))
power.mc

## [1] 0.558

1FOCE



Summary - Monte Carlo based power

I Intuitive (replicates data analysis process)
I Potentially slow (especially for NLMEMs and power vs. sample

size curves)

Alternatives?



Asymptotic distribution under H1

Under H1 the W asymptotically follows a non-central chi-square
distribution2,i.e.

Pr (W = w|H1) d−→ fχ̃2(λ, k, w)

fχ̃2(λ, k, w) is pdf of non-central chi-square distribution

I Degrees of freedom k
I Non-centrality parameter λ

Know k, but not λ → estimate it

2Rochon (1998)



Parametric power estimation

1. Use Monte-Carlo simulations to generate y1, . . . , yM
2. Estimate all yi with full and reduced model → wi
3. Estimate λ̂ = argmax

∑M
i=1 log fχ̃2(λ, k, wi)

πPPE = 1−

χ2
1,(1−α)∫
−∞

fχ̃2(λ̂, k, x)dx



AD trial - Parametric power estimation

I Implemented AD model in NLMEM software (NONMEM)
I Simulated 500 datasets

I Estimated3 with full model
I Estimated with reduced model

I Calculated the log-likelihood ratios

load("../../data/dofv_mc_500.Rdata")
ll<-function(ncp)-sum(dchisq(dofv,df=1,ncp,log=T))
fit <- optim(par=mean(dofv)-1, fn=ll, method="BFGS")
power.ppe <- 1-pchisq(qchisq(0.95,df=1),df=1,

ncp=fit$par)
power.ppe

## [1] 0.5211

3FOCE



Summary - Parametric power estimation

I Easy to implement
I Conceptually more complex
I More assumptions
I Still dependent on simulated data



Removing the data dependence

Relationship for the non-centrality parameter4

λ = Ψ(θ̂)T
[
∂Ψ(θ̂)
∂θ

I(θ̂)−1∂Ψ(θ̂)T

∂θ

]−1

Ψ(θ̂)

I Ψ constraint function such that Ψ(θ) = 0 under H0
I I(θ̂) observed information matrix

Substituting I with the expected information matrix I and θ̂ with
θG

λ ≈ Ψ(θG)T
[
∂Ψ(θG)
∂θG

I(θG)−1∂Ψ(θG)T

∂θG

]−1

Ψ(θG)

4Rochon (1998)



Wald statistic

For hypotheses of the form

H0 : θE = θ0
E H1 : θE 6= θ0

E

and effect guess θGE

λW = Ψ(θGE)T
[
∂Ψ(θGE)
∂θGE

I(θGE)−1∂Ψ(θGE)T

∂θGE

]−1

Ψ(θGE) =

(θGE − θ0
E)I(θ

G
E)−1(θGE − θ0

E)T



Wald based power

1. Calculate the expected information matrix I
2. Calculate non-centrality parameter λW using

λW = (θGE − θ0
E)I(θ

G
E)−1(θGE − θ0

E)T

3. Calculate power using the cdf of non-central chi square
distribution, i.e.

πW = 1−

χ2
1,(1−α)∫
−∞

fχ̃2(λW , k, x)dx



Wald based power curve

Information matrix I is additive for different subjects, i.e.

I(Ξ) = NI(ξ0)

if design is the same for all subjects N

λW (n) = n(θGE − θ0
E)I0(θGE)(θGE − θ0

E)T

→ Directly obtain power versus sample size curve



AD trial - Wald based power

I Implemented AD model in PopED for R

source("../../scripts/ad_example.R")
fim <- evaluate.fim(poped.db)
ncp <- get_all_params(poped.db)$bpop[3]^2/solve(fim)[3,3]
power.w <- function(n) 1-pchisq(qchisq(0.95,df=1),

df=1,ncp=ncp*n/100)
power.w(100)

## [1] 0.6802



AD trial - Wald based power curve
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Summary - Wald based power

I Very fast
I Delivers full power curves
I Requires information matrix (discrete NLMEMs?)
I Optimistic



PPE based power curve

Relationship between study size and non-centrality parameter can
also be used for parametric power estimation

1. Use Monte-Carlo simulations to generate y1, . . . , yM
2. Estimate all yi with full and reduced model → wi
3. Estimate λ̂0 = argmax

∑M
i=1 log fχ̃2(λ, k, wi)

4. For every sample size n calculate power using

πPPE(n) = 1−

χ2
1,(1−α)∫
−∞

fχ̃2(λ̂0
n

N0
, k, x)dx



AD trial - PPE based power curve
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Non-linear Wald statistic

Wald statistic only considers precision of effect parameters
(parameters constrained under H0)

(θGE − θ0
E)I(θ

G
E)−1(θGE − θ0

E)T

But, likelihood ratio statistic takes all parameters into account

Consider instead

H0 : E(ff ) = E(fr) H1 : E(ff ) 6= E(fr)

i.e. under H0 full and reduced model predictions are identical
(non-linear hypothesis)



Non-linear Wald statistic (2)

Remember formula for λ

λ ≈ Ψ(θ)T
[
∂Ψ(θ)
∂θ
I(θ)−1∂Ψ(θ)T

∂θ

]−1

Ψ(θ)

Derive Ψ using first order approximation

E(f(g(θ, ηi, ai), tij)) ≈ f(g(θ, ηi, ai), tij)|ηi=0

Ψ(θ) = (ff − fr) |ηi=0 = 0

Combining with λ formula

λNLW = (ff − fr)T
[
∂(ff − fr)

∂θ
I(θ)−1∂(ff − fr)

∂θ

]+
(ff − fr)

(+ Moore-Penrose generalized inverse)



AD trial - Non-linear Wald power

I Implemented AD model in PopED for R
I Calculated ff , fr, ∂ff/∂θ and ∂fr/∂θ

fim <- evaluate.fim(poped.db)
dpsi <- dF-dR
psi <- f-r
ncp.nwald <- t(psi)%*%pinv(dpsi%*%

solve(fim)[fe_index,fe_index]%*%
t(dpsi))%*%psi

power.nlw <- function(n) 1-pchisq(qchisq(0.95,df=1),
df=1,ncp=ncp.nwald*n/100)

power.nlw(100)

## [1] 0.5535



AD trial - Non-linear Wald power curve
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Summary - Non-linear Wald power

I Very fast
I Delivers full power curves
I More precise than “classical” Wald5

I Requires information matrix (discrete NLMEMs?)

5Ueckert et al. 2012



Method comparison

Compare for AD trial scenario:

I MC power based on 10,000 samples (reference)
I MC power based on 500 samples (1000 repetitions)
I PPE power based 500 samples (1000 repetitions)
I Wald power
I NL Wald power



Method comparison - Results
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Summary

I Monte Carlo
I Easy to implement
I Computationally expensive

I Parametric power estimation
I Fewer Monte Carlo samples & full power power curves
I More assumptions

I Wald statistic (linear)
I Very fast
I Requires FIM
I Very optimistic

I Non-linear Wald statistic
I Very fast
I More precise than linear Wald
I Requires FIM
I Optimistic
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