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Introduction

« Multiple Model Optimal (MMOpt) Design

— Captures essential elements of Bayesian Experiment Design without the
excessive computation

— Minimizes a recent theoretical overbound on the Bayes Risk (Blackmore et. al.
2008 [4])

— Intended for multiple model (MM) parametrizations which form the basis of
the USC BestDose software (corresponds to the support points in a
nonparametric population model )

— Has several advantages relative to D-optimality and other criteria based on
the asymptotic Fisher Information matrix for nonlinear problems

« Contribution of present paper, since the last PODE, is to generalize MMOpt
by introducing a weighting into the Bayes Risk Cost

— New result shows that simple analytical overbound of [4] is preserved in the
weighted case

— Weights allow MMOpt experiment design to address many problems of
practical interest (AUC estimation, what best future dose to give, etc.)

« Numerical examples demonstrate MMOpt on several relevant PK problems
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¢ Dynamic Model and Measurements
z(t) = f(z(t),d(t),0) State z, Input d, Parameter 0 € RP
me = h(x(tx),0), System output at time 7
Yr = Mk + oxng, Noisy measurement at time
ni ~ N(0,1), Gaussian measurement noise

& ={t1,....,t,}, Experiment design (optimal sampling)

e D-Optimal Design
maxg ’M‘

where the Fisher Information Matrix M is given by,

M(6,6) = Sny 2 %5 5 |

0=0
e Herein, M (0,¢) is assumed to be a function of ¢

(i.e., nonlinear problems)



D-Optimal Design for Nonlinear Problems

(traditional) maximizes the determinant of the Fisher
Information Matrix (Fedorov 1972 [20], Silvey 1980 [19] )

— max |M|, where M is Fisher Information Matrix, and |(.)| is determinant
— Useful tool has become standard in design of clinical experiments

* For nonlinear problems, offers several advantages relative to D-
optimality and other criteria based on the asymptotic Fisher Information
matrix

— Avoids associated with having to know a patient's
true parameters in order to design an experiment
— Avoids using an when placing only a

small number of samples

 To robustify D-optimal design, an expectation is taken with respect to
certain functions of prior information giving rise to ED, EID, and ELD (or
API) optimal designs

— Chaloner [13], Pronzato [14][15], Tod [16], D’Argenio [17]



Definition of ED, EID, API

e Robust D-Optimal Designs
ED: arg maxg EQ( ‘M| )
EID: arg ming Eg(ﬁ)
API: argmax¢ Ly ( log|M‘ )
where,
0 € R? - Parameter Vector
n = {t1,...,t,} - Experiment design

M - Fisher Information Matrix

« All above design metrics require Fisher Matrix M to be
nonsingular, and hence require at least p samples to be taken,
where p=# parameters




Multiple Model Optimal Design

USC BestDose software [3] is based on a multiple model (MM)
parametrization of the Bayesian prior (i.e., discrete support points in the
nonparametric population model)

MM Prior

0.015

— Nonparametric Maximum Likelihood (NPML)
estimation of a population model has the form
of a MM prior (Mallet [5], Lindsay [6]).

— Software for population NPML modeling is Tt B
available, e.g., NPEM (Schumitzky [7][11]), T I — o
NPAG (Leary [8], Baek [9]), USC*PACK (Jelliffe Ky
[10], and Pmetrics in Bestdose [3]. T

Experiment design for MM (i.e., discrete) models is a subject found in

classification theory

8 o001
o

0.005

0

— How do we sample the patient to find out which support point he best
corresponds to?

— Classifying patients is fundamentally different from trying to estimate
patient’s parameters

Treating MM experiment design in the context of classification theory leads
to the mathematical problem of minimizing Bayes risk (Duda et. al. [21]) 5




Multiple Model Optimal Design (MMOpt)

e Bayes Rule

H;,u)p(H; .
p(HZ’ya ’U,) — ly] p(y|f3£( )9 L= 1: ey T

H, - Hypothesis that model ¢ corresponds to true subject

u - Experiment design variable (to be optimized over)

e Design Rule for MM Classifier
If p(H,|y,u) = max;{p(H;|y,u)}, then

1. H; is classified as TRUE
(i.e., j'th model is classified as true subject)

2. H,; for 1 # j is classified as FALSE

e Design Regions
MM classifier breaks y into m regions R;, 1 = 1,...,m

such that H; is classifed as TRUE when y € R;.




Multiple Model Optimal Design (Cont’d)

e Bayes Risk (i.e., Probability of MM Classifier Being Wrong)
P(error) = 321" >0, P(y € Ry, Hilu)

(Sum of probabilities over all possible ways of making a mistake)

e Bayes Risk represents a cost function to be minimized

- Consistent with a Bayesian experiment design philosophy

e Result: (Blackmore et. al. 2008)
The Bayes Risk is upper bounded as follows:

P(error) < Z;n 2;’;% P(Hi)%P(Hj)%e—k(i,j)

where,

k(i ) = $(u(i) — u(@)" (E(i) + Z(j)) (ul) — i) Lin! \/(E:(())ﬁi(é;)”

e MMOpt minimizes upper bound (1) on the probability that the true subject
will be incorrectly classified




Model Response Se

* Model Response Separation r(t) is the 1
separation between two model responses at a

given time t

r(t) = |n(t,a1) —n(t, az)|

*Defines natural statistic for discriminating

between two models

paration r(t)

Model Responses

I I
— Model 1 Reponse

— Model 2 Response
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MMOpt Example: 4-Models (1/2)

e Two-Parameters a, b

Model Responses
T

v = n(ti,a,b) + on;

[
[

[
[

n(t,a,b) = be “° Model Responses
e Grid points t=0.05 apart
n; ~ N(0,02) . P - part o
» Designs optimized over time grid
o=20.1
1.5
e Prior: p; =.25, i1=1,...,4
1
Model Parameters
S
# a b 05 —
1 2 | 2.625 | | _ |
2 1 0.6 % 0.5 1 1.5 2 2.5 3 3.5 4
3 07| 06 time (s)
4 05| 06
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MMOpt Example: 4-Mode

s (2/2)

Design Metric 2-Sample Times Bayes Risk | Bayes Risk
99%Conf *
MMOpt 0.45 1.4 0.32839 +/- 0.00070
ED 0 0.8 0.37028 +/- 0.00070
EID 0 1 0.36044 +/- 0.00072
API 0 0.95 0.36234 +/- 0.00072
Design Metric 3-Sample Times Bayes Risk | Bayes Risk
99% Conf *
MMOpt 0.45|1.4 1.4 0.28065 +/- 0.00067
ED 0 0.7 |0.9 0.32048 +/- 0.00067
EID 0 0 1 0.36034 +/- 0.00072
API 0 0.85 | 0.105 0.3099 +/- 0.00069

MMOpt has smallest Bayes Risk of all designs studied

* evaluated based on Monte Carlo analysis using 1,400,000 runs per estimate
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Comparison Table

ED

EID

API

MMOpt

Invariant under regular linear Yes Yes Yes Yes
reparametrization™

Invariant under regular nonlinear | No No Yes Yes
reparametrization™

Allows taking fewer than p No No No Yes
samples, p=# of parameters

Can handle heterogeneous No No No Yes
model structures

Gives known optimal solution to | No No No Yes
2-model example®

Captures main elements of No No No Yes

minimizing Bayes risk

*Proved in Bayard et. al., PODE 2013 [23]
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Weighted MMOpt

e Introduce weights {c;;} to specify a cost for each type of classification error

e Assign ¢;; as the cost of mistaking truth subject ¢ for subject j (j # )

e Choice of weights tailors experiment design to desired applications of interest

HORIZON 1

{p(H i )} MMopt
—»  Expt

Design

{cij} weights

-

-

Posterior
{p(H|Y,0)} )
Bayesian Parameter |_V>K
Posterior Estimates E—
5| AUC AUC
Estimates »
4 HORIZON 2
" 7 dose
;amrggle Optimal dosing d,(1)
for target AUC |- >
on next horizon

Parameter
Estimation

Metric
Estimation

N

Optimal

> Dosing
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Weighted MMOpt

e Weighted Bayes Risk (i.e., Expected Cost of MM Classifier Being Wrong)
Clerror) =32" Y20 cijP(y € Ry, Hi|u)

(Sum of costs over all possible ways of making a mistake)

Here, c;; is the cost of mistaking subject i for subject j (j # i)

e Useful Result (new)
The Weighted Bayes Risk is upper bounded as follows:

C(error) <> " Zg’é@ EijP(Hi)%P(Hj)%e_k(i’j)

where,

k(i,5) = 3 () — p(@)* (E(z‘) -+ E(j)) l (u(4) — p()) + L In ! f;())];((:;)))”

Eij = max (Cij, Cj@')

e Result allows weighted bound-optimal designs to be systematically calculated as in the
unweighted MMopt case

o Weighted MMOpt minimizes upper bound (2) on the expected cost

associated with the true subject being incorrectly classified




Applications of MMOpt

 Three Numerical Examples
— PK Estimation (unweighted MMOpt)
— AUC Estimation (weighted MMOpt)
— AUC Control (weighted MMOpt)

* Results will be compared to ED optimal design
EDopt

— Also compared to Bayes optimal design Bopt when
computationally feasible to do so
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PK Population Model with 10 Multiple Model

Points - First-Order PK Model

e First-Order Model

rT=—Kx+d
_ x(ts)
= v
Yi =1 +oiny
g; = 0.1
Model Parameters
# K V
1| 0.090088 | 113.7451
2| 0.111611 | 93.4326
3| 0.066074 | 90.2832
4| 0.108604 | 89.2334
5| 0.103047 | 112.1093
6 | 0.033965 | 94.3847
7 | 0.100859 | 109.8633
8 | 0.023174 | 111.7920
9 | 0.087041 | 108.6670
10 | 0.095996 | 100.3418

Dose input = 300 units for

1 hour, starting at time O

Concentration

3.5

-

250

All subject responses

Model Responses

2.5

* Grid points 15 min apart
.. * MMOpt optimized over time grid

T

0.5

o

10

15 20
Time (hr)
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Unweighted MMOpt for PK Estimation

« Summary of optimal 1,2 and 3 sample designs applied to PK Estimation

Design Metric Samples Bayes Risk | 99% conf
(hr) (prob) (prob)

1-Sample Design

Bopt 4.25 0.5474 +0.0015

MDMopt 4.25 0.5474 +0.0015
2-Sample Design

MMopt 1 9.5 0.2947 +0.0014

EDopt 1 24 0.3272 +0.0014
3-Sample Design

MMopt 1 1 10.5 1 0.2325 +0.0013

EDopt 1 1 24 0.2617 +0.0013

« 1 Sample Design: MMOpt performance equals Bayesian optimal design (both
have Bayes Risk of 0.5474).

«  MMOpt performance improves on EDopt design for 2 and 3 sample designs
— 2 Sample Design: Bayes Risk of 0.29 versus 0.33
— 3 Sample Design: Bayes Risk of 0.23 versus 0.26
« All results are statistically significant to p<0.0001 17




Weighted MMOpt for AUC Estimation

e OBJECTIVE: Design an experiment which is most informative about esti-
mating patient’s AUC

e In this case MMopt weights are chosen as

D D \°
o = _
! Vil ViK;

= Squared AUC error incurred if 7’th subject’s
AUC is used to estimate i'th subject’s AUC

# AUC Responses
1 202767
350 2 28.7684
300 3 50.2902
250 4 30.9562
£ 20 5 25.9683
150 § 93.5811
7 27.0711
) g 1158003
0 0 31.7176
° ° Yty ® 10 31.1448
. . Mean | 46.4578
Dose input D = 300 (300 units STD 130 2314

of drug infused over 1 hour) AUC responses to dose D 15



Weighted MMOpt for AUC Estimation (Cont’d)

« Summary of optimal 1,2 and 3 sample designs applied to AUC estimation

Design Metric Samples RMS Error | 99% conf
(hr) (AUC units) | (AUC units)

1-Sample Design

Bopt_C, 24 5.9059 +0.0270

MMopt_C, 14 6.9789 +0.0265

MMopt 4.25 21.6806 +0.0919
2-Sample Design

MMopt_C, 1 13 1.8386 +0.0231

M>Mopt 1 9.5 2.2346 +0.0483

EDopt 1 24 2.2079 +0.0211
3-Sample Design

MMopt_C, 1 10.25 | 10.25 | 1.4042 +0.0175

MMopt 1 1 10.5 | 1.7025 +0.0382

EDopt 1 1 24 1.8949 +0.0188

« 1 Sample Design: Weighted MMOpt performance approximates that of the
Weighted Bayesian optimal design (RMS error of 6.98 versus 5.9 AUC units)

«  MMOpt performance improves on EDopt design
— 2 Sample Design: RMS error of 1.84 versus 2.21 (units of AUC)
— 3 Sample Design: RMS error of 1.40 versus 1.89 (units of AUC)
« All results are statistically significant to p<0.0001 19




Weighted MMOpt for AUC Control

e OBJECTIVE: Design an experiment most informative about next dose

needed for patient to achieve a specified AUC of ag4.; = 40

e In this case MMopt weights are chosen as

Dj 2
Cij — e
1] ( V;Kz des)
i Ideal Dose = Squared AUC error incurred if j’th subject’s
1 409.8827 ideal dose D; is given to ¢’th subject
2 417.1242
3 238.6149 j=1]j=21j=38] j=4]j=51j=6] j=7]j=8]j=9]j=10
4 387.6442 i=1 0] 0499 | 279| 470 259 755 105| 893 | 9047 575
5 162 1011 i =2 0.4%2 0 203| 799 186 767 626[ 903 | 138] 9.31
G 198 9311 i=3| 824| 95 0| 624 1403 | 342 | 1176 | BI2| 54s 604
- 1439981 i—4| 526| 925] 236 0| 59.0| 716 328 858 0.921 | 0.0586
, ——— i=5| 204 15.1] 374| 415 0 835| 266| 962 525 442
o ‘10‘,3 ‘?%G‘ i—6| 771 SI21| 1185 | 6548 | 10846 0 9654 | 58.9| 6086 6430
) 378.5394 =7 905 5501 340| 25.1] 290 08 01 939 312 273
10 385.2965 i =8 | 13975 | 14643 | 2715 | 12019 | 19147 | 90.1 | 17184 0| 11244 | 11821
Mean | 335.4080 i—9| 11.1] 168] 218] 0967 784 699] 47.0| 843 01 0541
STD | 358470 i—10] 6511 109] 23110.0594| 635 712 36.1] 855 0.521 0

Ideal Doses {D;} to achieve Matrix of Weights {c;;}
desired AUC of ay.. = 40 20



Weighted MMOpt for AUC Control (Cont’d)

« Summary of optimal 1,2 and 3 sample designs applied to AUC control

Design Metric Samples RMS Error | 99% conf
(hr) (AUC units)  (AUC units)

1-Sample Design

Bopt_C; 12.5 3.6194 +0.0273

MMopt _C, 14 3.7729 +0.0166

MMopt 4.25 16.7924 +0.1145
2-Sample Design

MMopt_C, 1 13 2.1102 +0.0125

MMopt 1 9.5 2.2575 +0.0232

EDopt 1 24 2.6159 +0.0174
3-Sample Design

MMopt_C, 1 10.25 | 10.25 | 1.6967 £0.0078

MMopt 1 1 10.5 | 1.9991 +0.0192

EDopt 1 1 24 2.4194 +0.0174

« 1 Sample Design: weighted MMOpt performance approximates that of the
weighted Bayesian optimal design (RMS error of 3.62 versus 3.77 AUC units)

«  MMOpt performance improves on EDopt design for 2 and 3 sample designs
— 2 Sample Design: RMS error of 2.11 versus 2.62 (units of AUC)
— 3 Sample Design: RMS error of 1.70 versus 2.42 (units of AUC)

« All results are statistically significant to p<0.0001
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Summary

Multiple Model Optimal Design (MMOpt) provides an alternative
approach to designing experiments

— Particularly attractive for Nonparametric Models (MM discrete prior)
— Based on true MM formulation of the problem (i.e., classification theory)
— Has several advantages relative to ED, EID and API (last year's PODE [23])

— Based on recent theoretical overbound on Bayes Risk (Blackmore et. al.
2008 [4])

Introduced Weighted version of MMOpt which minimizes upper
bound on the Weighted Bayes Risk
— Allows specification of costs for each type of classification error

— Preserves overbound property so that weighted MMOpt designs are as
straightforward to compute as unweighted MMOpt designs

— Examples show that weighted MMOpt performance improves on EDopt, and
compares favorably to the theoretically best performance of the weighted
Bayes optimal classifier

MMOpt captures essential elements of Bayesian Experiment
Design without the excessive computation

— Bayesian formulation of design problem for multiple model problems
— Allows approximate pre-posterior analysis “without tears”

— To be included in a future release of the USC BestDose software [3]
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