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Combination of Drugs for infectious diseases: 
 Optimal design requires optimal doses.  
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Motivation: Dose finding poorly formalized and in 
some cases quite complex. 
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 An optimally designed trial must either explore the dose-(exposure)-
response relationship and/or confirm that a given regimen meets the 
clinical endpoint. 

 Dose finding is a heuristic exercise using components of the dosing 
regimen (total amount, number of doses, dosing interval) as 
independent variables and balancing different safety and efficacy 
criteria. 

 For certain indications (e.g. malaria), combination therapies across the 
entire population are mandatory, adding more dimensions.  

 In these settings, the optimal dosing regimen is usually not identified, 
only approximated.  

 Thomas will demonstrate the trial and error approach, Kabir will 
introduce a formal, model based method for optimization of a dosing 
regimen given multiple criteria and constraints.  



Model needed for both approaches.  
Model Structure: Self contained blocks (“LRU’s”). 
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Model structure: Introduction of cumulative kill assess-
ment (parasite numbers decrease>=12 log10 units). 
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Semi-mechanistic accelerated kill rate model 

 dP/dt is the rate of change of the parasite count. 

 Parameters:  

• k0 (spontaneous growth rate)  

• kmax (max. kill rate)  

• EC50 (plasma concentration yielding 50% of kmax)  

• SLP (steepness of the concentration-effect curve  

• P(0) (initial parasite count) 

 For every additional drug, addl. concentration dependent kmax term. 

 In VIVO MIC, EC50 and EC90 are interrelated. 
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“Cumulative Kill” (Czock 2007) from accelerated 
kill rate model (Hoshen 1998, Simpson 2000) 

 Cumulative kill is independent of value and time of assessment of 
parasite counts. 

 Parameters:  

• k0 (spontaneous growth rate)  

• kmax (max. kill rate)  

• EC50 (plasma concentration yielding 50% of kmax)  

• SLP (steepness of the concentration-effect curve  

• P(0) (initial parasite count) 
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max. value of INTkill: Cumulative Kill  



Candidate metrics: “Posthoc empirical” and 
“Cumulative Kill”. 
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 Dosing regimen (dose fractionation). 

 PK-metrics (Cmax, AUC, concentration at t=?, e.g. d7) 

 Extended PK-metrics (Cmax/MIC, AUC above MIC, Time 
above MIC, MIC from in vitro or animal studies) 

 Presentation includes the following examples for 
ART/LUM combination therapy:  

Cmax Artemether (first dose), AUC Lumefantrine, 

168h concentration of Lumefantrine, cumulative kill. 



Considerations for pediatric dose finding, extension to 
fixed dose combinations. 
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 SOP: Assume unchanged PD, adjust PK parameters for 
effect of age and size, match target PK metric from adults.  

 For a fixed dose (ratio) combination therapy, this may not 
be possible (different maturation functions, idiosyncratic 
behavior (bioavailability) of combination partners preclude 
exact matching of exposure for 2 or more components).  

 Ultimate goal is safe and effective therapy across all 
age/weight bins.  

 For fixed dose combination therapies, optimization of 
dosing regimen therefore includes assessing clinical 
endpoint(s) in target populations (if possible, safety and 
efficacy). 



Assessment of PK metrics of Artemether/Lumefantrine 
(1:6) across target population. Current label (>=5kg). 
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 Upper panel: Cmax of Artemether (geometric mean), Fraction above 
upper limit of 200 mcg/L. Lower panel: 168h concentration of 
Lumefantrine (geometric mean), Fraction above lower limit of 175 mcg/L). 

Wt [kg] Age 

[y] 

Fraction 

adult 

dose 

(Tablets) 

LUM 

[mg] 

ART 

[mg] 

<=5* n.a 0.25 (1) 120 20 

<=15 n.a. 0.25 (1) 120 20 

<=25 n.a. 0.5 (2) 240 40 

<=35 n.a. 0.75 (3) 360 60 

>35 n.a. 1 (4) 480 80 
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* extrapolation, not approved 



“Efficacy” assessment of Artemether/Lumefantrine 
(1:6) across target population. Current label (>=5kg). 
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 Match adult cure rates (most 
important, but not sufficient 
metric). 

 Fraction eradicated given typical 
parasite load, Fraction with 
cumulative kill >12 log-units. 

Wt [kg] Age 

[y] 

Fraction adult 

dose (Tablets) 

LUM [mg] ART [mg] 

<=5* n.a 0.25 (1) 120 20 

<=15 n.a. 0.25 (1) 120 20 

<=25 n.a. 0.5 (2) 240 40 

<=35 n.a. 0.75 (3) 360 60 

>35 n.a. 1 (4) 480 80 
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Assessment of PK metrics of Artemether/Lumefantrine 
(1:6) across target population. “Alternative regimen”. 
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 Upper panel: Cmax of Artemether (geometric mean), Fraction above 
upper limit of 200 mcg/L. Lower panel: 168h concentration of Lumefantrine 
(geometric mean), Fraction above lower limit of 175 mcg/L). 

Wt [kg] Age 

[y] 

Fraction 

adult 

dose 

(Tablets) 

LUM 

[mg] 

ART 

[mg] 

n.a. <0.1 0.083 

(0.33) 

40 6.6 

<5 >0.1 0.125 

(0.5) 

60 10 

>=5 n.a 0.25 (1) 120 20 

>=10 n.a. 0.5 (2) 240 40 

>=25 n.a. 0.75 (3) 360 60 

>=50 n.a. 1 (4) 480 80 
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“Efficacy” assessment of Artemether/Lumefantrine 
(1:6) across target population. “Alternative regimen”. 
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 Match adult cure rates (most 
important, but not sufficient 
metric). 

 Fraction eradicated given typical 
parasite load, Fraction with 
cumulative kill >12 log-units. 

Wt [kg] Age [y] Fraction 

adult dose 

(Tablets) 

LUM [mg] ART [mg] 

n.a. <0.1 0.083 (0.33) 40 6.6 

<5 >0.1 0.125 (0.5) 60 10 

>=5 n.a 0.25 (1) 120 20 

>=10 n.a. 0.5 (2) 240 40 

>=25 n.a. 0.75 (3) 360 60 

>=50 n.a. 1 (4) 480 80 
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Is this a good regimen? Do you have to try others? 
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How would you decide? 

 Questions regarding the trial and error approach? 



Dose was independent variable (input). 
Can we obtain a distribution of doses as output? 
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 Current method treats dosing regimen as independent 
variable. 

 However, in dose optimization problems, dosing regimen 
is the dependent variable (as in “real life”). 

 Therefore, a vector of ideal doses achieving the desired 
value of the optimization criterion given constraints 
(exposure thresholds, discrete dose sizes and (for 
combination products) fixed dose ratios) across the entire 
age-weight distribution is the desired output.   

 A method to obtain this vector based on a new algorithm 
will be demonstrated.  



The Efficient Dosing (ED) Algorithm 
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Explicit Optimization of the Target Criterion 

 Computational algorithm to compute the optimum dose 
regimen to administer. 

 The inputs to the algorithm are estimates of the PK 
parameters, dosing time points and the objective function 
to be optimized. 

 The algorithm starts with an initial vector of doses which 
converges to the optimum vector in each successive 
iteration. 

 The algorithm can also be applied to drug combinations to 
determine the optimal ratio and the optimal dose regimen 
for the combined unit. 



The Efficient Dosing (ED) Algorithm 
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Some Notations 

                 

 

                 B 

 

   

 

  The defined objective function is minimized by the ED 
algorithm to find D* using an optimization method similar 
to the Line Search method. 
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Example Criterion 1: Target Concentration 

 

The Efficient Dosing (ED) Algorithm 
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The Efficient Dosing (ED) Algorithm 
 Example Criterion 2: Therapeutic Window 
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Example Criterion 3: Target Reduction in Viral Load 

The Efficient Dosing (ED) Algorithm 
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The Efficient Dose (ED) Algorithm 
 An Example:  

 Consider a drug following a one compartment model with estimated 
parameters: Ka = .37 /h, Ke = 0.2 /h, V = 24 L, F = .95. A dose 
regimen is desired which maintains the concentration between 3.5 
mg/L and 2.5 mg/L for T = 42 h. Dosing time points are every 6 hours 
and up to 7 doses can be administered. 

                                                                                           is the 
optimized dose regimen. 
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 The algorithm permits discretization of doses. That is the 
optimized doses can be real numbers or multiples of 
whole numbers, as desired. 

 The algorithm can also be used in an adaptive trial setting 
when there is little information available on the 
parameters. 

 The basic method is to start with an initial guess of the 
parameters, administer the best dose regimen to a cohort 
of individuals based on that guess, collect blood samples 
at population D-optimal times and then update the 
estimates. This continues until a stopping rule is met. 

The Efficient Dose (ED) Algorithm 
 Other Features of the Algorithm 
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Investigation of the optimal doses and ratio of Lumefantrine and Artemether  

 We define the target criterion to be the achievement of 
total AUC of Lumefantrine to be 400 mg/L*h. 

 An upper constraint of 0.2 mg/L is strictly imposed on 
Artemether. If the usual 1/6th dose of Artemether breaches 
this constraint, the algorithm decreases this fraction and 
keeps doing it until a safe dose of Artemether has been 
identified.  

 The ratio of Artemether:Lumefantrine, along with the 
optimized doses are reported by the algorithm. 

Application of the ED Algorithm to the Problem 
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Optimal doses 

 

 

 

 

 

 

 

 Mode Lumefantrine  and Artemether doses vs. Age 

Application of the ED Algorithm to the Problem 
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Optimal doses 

 

 

 

 

 

 

 

 Mean Lumefantrine  and Artemether doses vs. Age 

Application of the ED Algorithm to the Problem 
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Optimal ratio 

 

 

 

 

 

 

 

Mode optimal ratio of L:A vs. Age (note the good agreement 
with the 6:1 ratio in the existing formulation). 

Application of the ED Algorithm to the Problem 
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Optimal ratio 

 

 

 

 

 

 

 

Mean optimal ratio of L:A vs. Age (note the good agreement 
with the 6:1 ratio in the existing formulation). 

Application of the ED Algorithm to the Problem 



| Presentation Title | Presenter Name | Date | Subject | Business Use Only 29 

Distribution of Optimum Doses with Age 

Application of the ED Algorithm to the Problem 

  L 

  A 



Conclusions  
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ED algorithm deserves a place in the dose finding toolbox, some caveats apply  

 “Proof of concept” of ED algorithm successful. 

 “Selling point”: Multidimensional optimization, mapping the logical 
input (criteria) – output (dose vector) relationship. 

 Could be viewed as extension of dose finding based on steady state 
metrics (e.g. matching AUCs), but much more powerful and flexible.  

 Further extensions: Assessment of size of error for the optimal dosing 
regimen. 

 CAVEAT: Multidimensional optimizations always include tradeoffs 
(weights). Quality of predictions can only be as good as choice of 
criteria, constraints and weights (A fool with a tool, is still a fool).   


