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Dose Response/Finding is
done badly in the
Pharmaceutical Industry



Start with some numbers - lack of efficacy
remains the main reason for development
failure
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Why do we look at Dose Response?

« Knowledge of dose response relationships is important in establishing safe
and effective drugs.

 From ICH E4 - Dose-Response Information to Support Drug Registration
(1994)

— Purpose of Dose Response is to have knowledge of the relationships
among dose, drug concentration and clinical response

* Could you answer the question “How do you know that lower doses are just
as effective and safe?”



What are some of the consequences of poor

dose choice?

20% of post approval changes are to dose (and this does not include those
which have dosage changes whilst in Phase 3)

This is mainly related to efficacy but could also be related to safety.

Historically, there have been examples where the dose chosen has turned
out to be too high sometimes with adverse consequences (e.g. hypokalemia
and other metabolic disturbances with thiazide-type diuretics in
hypertension).

Poor dose finding early on in development could lead to the need for dose
finding in a confirmatory study - i.e. take two active doses into Phase 3 and
drop one at an interim

Better to understand as much as possible before going confirmatory - this
includes knowledge of the shape and location of the dose response curve.



What Does Knowledge of the Dose Response
Curve Give Us?

* The optimum dose - the dose which best addresses the objectives
* The minimal effective dose
* The dose producing the maximum effect

* Allows for adjustment of doses beyond what dose would there be no
benefit or be unsafe

« Allows us to understand the therapeutic window

- For this we need knowledge of DR for both desirable and undesirable
effects
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Motivating Example
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First Time in Human Study in Alzheimer's
Patients

* Objective was to evaluate safety, tolerability, PK, PD and immunogenicity
» Single dose, single blind, parallel group

« Traditional dose escalation design would have equally spaced ascending
doses

« Aim to determine the dose that “inhibits” plasma biomarker

 Inhibition = Percentage decrease in the biomarker at day 21 post-dose
compared with baseline (pre-dose)

= 100 * (B, - Bpost) / Bpre

pre

« Used to adaptively guide dose escalation (in conjunction with safety,
tolerability and pharmacokinetic endpoint)



Modelled inhibition over time
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Modelled inhibition as function of dose
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Simulated Inhibition as function of dose:
Emax model
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Doses

* Dose range
« Defined using animal studies
» Dose for the first cohort: 0.001
 Maximum dose: 20

* Doses for subsequent cohorts

* May be altered based on accumulating data
(subject to limits)
» 10-fold while dose has “small PD effect”
» 5-fold once a PD effect is observed

« Nominal doses to use as defaults if necessary
- 0.001, 0.005, 0.02, 0.08, 0.4, 2, 10 and 20



Model

Measurements: Y;=f1(d,, ) +¢&, 1=1,...,N

 f - response function:

) EHHT 'j'rn EHHH'
fldB) = —mar ™ _ _ mar

d; - dose for patient I, N - number of patients

Response parameters p = (E,.,, EDz, v):
E ... Mmaximal response (limit as dose increases )

ED.,: dose at which the response is half of E_,
Y slope parameter (how steep/flat the curve is )



Model (cont)

Errors: Gaussian 1.1.d. g with zero mean

Variance models (with additive and multiplicative
components)

S =Var g =06, t %y i, fi=1(d; f)
(variance increases with dose)
S = GZA T GZI\/I fi (Emax B f|)

(variance is the largest in the middle near EDg)

0= (E, . EDcy, 7; 0%4, 6%y ): combined vector of
parameters



Goal

Find dose EDy, which attains 90% of max response

 Interplay of model-based design and estimation
techniques

 Optimal design: search for doses that allow for “best”
estimation of:
« All model parameters — D-criterion, det [Var(6)]
* Dose EDgy, — C-criterion, Var(EDy)

« For each cohort, search for “optimal” doses given current
estimates of model parameters — adaptive approach

Box and Hunter (1965), Fedorov and Leonov (2005)



Applying this more widely

Could we apply this in a different dose finding scenario?

Could it be used with MCPMQOD?

Could it be used in an adaptive trial?

How could it be used in an adaptive trial?
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Comparison of Designs - Example

« Simple Example

Phase Ilb dose finding trial in respiratory

Objective - Find the dose that produces an improvement in FEV1 of 130 mL
over placebo

Five doses levels and placebo
= 100, 250, 500, 1000, 2000 mg

Placebo response assumed to be = 150 mL
SD = 400 mL

One-sided alpha level of 2.5%

Max sample size = 480 (interim at 240)
Endpoint available 1 week after dosing
Recruitment rate = 4 per week



Compare Three Approaches

MCP-Mod Only

— No interim and equal randomisation
— Analysis at the end of the study using MCP-Mod

Optimal MCP-Mod

- Interim carried out at 240 subjects and then use D and C Optimality to
determine the randomisation of the next subjects

— Analysis at the end of the study using MCP-Mod (even though you have a
good idea of the dose response)

Adaptive Design - Best Intention
— Interim carried out at 240 subjects

— Allocate remaining subjects according to what dose has the highest probability
of being the target dose.

— Analysis at the end Bayesian Pr(delta > 0)

Then for interest compare to Dunnett contrasts and model based contrasts



Candidate Models for MCP-Mod
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LOGISTIC (ED_S50=1000... DELTA= 200.0)




Assumed Response Shape
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Assumed Response Shape

« Sigmoid Emax

E, = 150 (Placebo effect)

E..x = 150 (maximum effect over placebo)

m

ED., = 700 (Dose which produces 50% of maximum effect)

Hill parameter = 4



Sample Sizes for Each Dose Under the Three
Designs — Maximum Sample Size = 480

MCP-Mod 80 80 80 80 80 80
Optimal 131 40 40 71 123 75
MCP-Mod

Best 164 51 41 43 55 126
Intention

* Do we want/need equipoise?

« What is our objective in Phase Il - find appropriate dose for Phase lll and
optimise shape of the dose response curve



Power Under the Three Designs (and Dunnett or

Model Based Contrasts)

* Power - to detect at least one dose significantly different to

placebo

MCP-Mod

Optimal
MCP-Mod

Best Intention
Dunnett
Model Based Contrasts

9500
96%

95%
65%
93%

4.1%
4%

2.4%
5%
5%
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Assumed Response Shape

« Sigmoid Emax

E, = 150 (Placebo effect)

E.ox = 130 (maximum effect over placebo)

m

ED., = 700 (Dose which produces 50% of maximum effect)

Hill parameter = 4



Sample Sizes for Each Dose Under the Three
Designs - Maximum Sample Size = 480

mmmm

MCP-Mod 80
Optimal 130 40 40 70 70 130
MCP-Mod

Best 155 70 41 42 49 123
Intention



Power Under the Three Designs (and Dunnett or

Model Based Contrasts)

* Power - to detect at least one dose significantly different to

placebo

MCP-Mod

Optimal
MCP-Mod

Best Intention
Dunnett
Model Based Contrasts

90%
9404

8100
53%
8500



Not the whole story - find a dose which gives

130mL increase over placebo
Maximum effect - 150mL

Design | TweDose |

MCP-Mod 1088 944
Optimal 1088 1029
MCP-Mod

Best Intention 1088 1000
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Summary and Conclusions

* We have to change the paradigm of dose finding
- Stop pairwise comparisons - fit a model

« MCP-Mod provides a good model based way of fitting a model to the data

» Use of adaptive designs can provide a flexible framework for modifying the
allocation

* The use of optimal designs can provide allocation where it is most
informative

« Using a combination of adaptive then allocating to the optimal doses can
be even more powerful



Doing now what patients need next



