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Context: Optimal design in NLMEM

* Choosing a good design for a planned study is essential
— Number of patients
— Number of sampling times for each patient
— Sampling times (allocation in time)

* Optimal design depends on prior information (model and
parameters)

* D-optimality criterion
— Local Designs
— Robust designs

Atkinson, Optimum Experimental Designs. (1995)
Dodds et al., ] Pharmacokinet Pharmacodyn. (2005)
Pronzato and Walter, Math Biosci. (1988)



Context: Adaptive design

AD: clinical trial designs that use accumulating
information to decide how to modify predefined aspects
of the study

— Areas of interest: predicting clinical data; Phase 1 studies

— ADs are useful to provide some flexibility but were rarely used
for NLMEM

Two-stage designs could be more efficient than fully
adaptive design (not yet tested in NLMEM)

Dumont et al. implemented two-stage AD in NLMEM
AD questions:

— How many adaptations? (e.g stages)
— How many patients in each cohort? (i.e. cohorts size)

Foo et al., Pharm Res. (2012)

Mentré et al., CPT Pharmacometrics Syst Pharmacol. (2013)
Fedorov et al., Stat Med. (2012)

Dumont et al., Commun Stat. (2014)



Objectives

. To compare by simulation one and two-stage
designs using a PKPD model in oncology

. To study the influence of the size of each cohort in

two-stage designs

. To test extensions of two-stage adaptive design as
three- and five-stage adaptive designs



Methods: Basic mixed effect model

* Individual model (one continuous response)

v. =f(¢;, &;) + &  vector of n, observations
* & :individual sampling times t; j=1, ... n,
* ¢; : individual parameters (size p)
* f:nonlinear function defining the structural model
* & :gaussian zero mean random error
* var (& ) = (Ginter + Osiopef (P1,§1))* combined error model

* Random-effects model

— ¢; = p X exp(b;)

— b;~N(0,Q) here Q diagonal: wf = Var(b;;)
* Population parameters: W (size P)

— [ (fixed effects)

— unknowns in ) (variance of random effects)

Ointer aNd/or ag ope(error model parameters)



Methods: Basic population design

* Assumption
— N individualsi
— same elementary design € in all N patients (§; = &) with
tq, ..., tn Sampling times
— N= Nxn
* n=number of samples for each individual

* Population design

E =N}



Methods : Fisher Information Matrix (FIM)

—azL(y;‘P))
owowT

* no analytical expression for FIM = FO approximation

* Elementary FIM: Mz (W, §) = E(

* Population Fisher Information Matrix for one group design
Mp(W,Z2) =N X Mp(¥Y,%)

* Mpgisimplementedin the R function « PFIM »

&

* InPFIM 4.0 (April 2014) it is possible to include prior information on
FIM for two-stage design

Mentré et al., Biometrika (1997)

Bazzoli et al., Comput Methods Programs Biomed. (2010)

Mentré et al., PAGE Abstr 3032 (2014)

Dumont et al., Commun Stat. (2014) 8
www.pfim.biostat.fr



Method: K-stage Ac

aptive Design
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Simulation Study: PKPD Model

* 2 responses model, developed for a novel oral
transforming growth factor § (TGF — 3)

PK: concentration

ka CL/V
frx (@, t) = DTEkkfk (et — g7kat) — Concentration /
CL
k=%

Parameters: k,,V,CL

PD: relative inhibition of TGF-3
ksyn % kout
dfpp (9, t)=k Imax " frk (@, t)_k f ((p f)
dt U foi (@, t)+ICsy O TPD AT D

Lnax =1

Parameters: k., ¢ [Cso

Gueorguieva et al., Comput Methods Programs Biomed. (2007)
Gueorguieva et al., Br J Clin Pharmacol. (2014) 10
Bueno et al., Eur J Cancer. (2008)



Simulation Study: Parameters

PK Parameters | Prior (W°) | True (\V*)
k,(h™1) 2 2
V (L) 100 100
CL(Lh™1) 40 10
w? 0 0
w2 0.49 0.49
w2, 0.49 0.49
Jinter,PK 0 0
Oslope,PK 0.2 0.2
PD Parameters | Prior (\Y°) | True (\W¥)
Koue (h™h) 2 0.2
ICsy(mg/L) 0.3 0.3
I% 0.49 0.49
out
We 0.49 0.49
Ginter,PD 0.2 0.2
Jslope,PD 0 0
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Simulation Study: Evaluated designs

« N=50

One-stage designs

* Rich design, n=6 sampling times: ¢,;., = (0.1,0.5,1.5,4,6,12)

* 2 optimal designs, n=3 sampling times among the 6 of &,.;.p:
— & = {&0K = (0.1,4,12); &P = (0.5, 1.5,4)} (D-optimal for ¥°)
— &, ={éPK =(0.1,4,12); &P = (4,} (D-optimal for W*)
— mixed design &,.(N,=25 patients with ¢,; N,=25 patients with ¢,)

Two-stage designs

* Balanced: {,c_,c (N;=N,=25)

* Various sizes for cohorts 1 and 2: ¢4, 15-35,$35-15, $40-10

Three-stage designs

* Small size for cohorts 1 (N;=10): ¢ 42020, $10-10-30
Five-stage design
$10-10-10-10-10 (N;=N;=N3=N,=Ns=10)

12



Simulation Study: Clinical Trial Simulation

100 data sets simulated with parameters W* and design &,

— For the designs to be evaluated were kept only the corresponding sampling
times

Parameter estimation: SAEM algorithm in MONOLIX 4.3

— 5 chains, initial estimates: W°
Comparison of one-, two-,three- and five- stage designs from 100
estimated ¥, ¥, , W5, W¥s:

— Relative Estimation Error (REE)

— Relative Bias (RB)
— Relative Root Mean Squared Error (RRMSE)

13



Results: 1-stage vs 2-stage balanced design

Relative Estimation Error (REE) for PK parameters Ka and CL

Ka CL
Srich S $o $0- $25-25 Srich S $0 o= $25-25
RB 0.4 0.9 1.0 1.1 0.5 RB 1.6 1.7 1.7 1.7 1.8




Results: 1-stage vs 2-stage balanced design

e Relative Estimation Error (REE) for PD parameters Kout and IC50

Kout IC50
Srich S $o $0- $25-25 Srich  $+ So  $o- $25-25
RB 0.6 2.6 34.2 3.2 3.7 RB -0.5 -0.3 53.1 0 1.5




Results: 1-stage vs 2-stage balanced design

* Relative Root Mean Squared Error (RRMSE) for PD parameters
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Results: 1-stage vs 2-stage balanced design

* Relative Root Mean Squared Error (RRMSE) for PD parameters
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Results: cohort size influence in 2-stage design

* Relative Root Mean Squared Error (RRMSE) for PD parameters

A Lili

o
$10-40 €15-35 $25-25 $&35-15  €40-10

™

200
l

150
l

O &8 0O 0O O
x&

RRMSE (%)

#
—
:I_‘




Results: cohort size influence in 2-stage design

* Relative Root Mean Squared Error (RRMSE) for PD parameters
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Results: 2-stage vs 3- and 5-stage adaptive designs

Relative Root Mean Squared Error (RRMSE) for PD parameters
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Results: 2-stage vs 3- and 5-stage adaptive designs

* Relative Root Mean Squared Error (RRMSE) for PD parameters

o [1.30®
E | I:l IEi“ﬂ:mt
=
m
LLl
o i
= =
i o
Ll @
7] N
= o
o 3
1.14 s
o | (F]
(T | [
o
=
( 05
[
510—40 10—-20-2( ' )—3( 10—10-10-10-1C

21
* RRMSEs standardized to ¢, (best 1-stage design)



Results: 2-stage vs 3- and 5-stage adaptive designs

* Relative Root Mean Squared Error (RRMSE) for PD parameters
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* RRMSEs standardized to ¢, (best 1-stage design)



Conclusions

1. With the balanced two-stage design {555«
— results are very close to those of £, and are much better than those of ¢,
2. The balanced ¢,:_,c was the best two-stage design compared to

unbalanced cohort size, especially if the second cohort was of
small size

3. In case of small first cohort, more adaptive steps are needed, but
these designs are more complex to implement

* Perspectives:

— Use robust approach for first stage
— Expand the approach for dose-finding
— Perform other studies

23
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Results: cohort size influence in 2-stage design

* Relative Estimation Error (REE) for PK parameters Ka and CL

Ka CL
. [ _ [ [ _ [ ‘7 [ _ [ _ [ _ [ B [ B [
$10—40 S15-35 ‘525—25 2('35—15 é—}[]—l[] $10—-40 S15-35 625—25 ¢3;5—15 Q'Jr[l—m
RB 0.5 0.8 0.5 0.7 0.9 RB 1.7 1.7 1.8 1.8 1.8




Results: cohort size influence in 2-stage design

e Relative Estimation Error (REE) for PD parameters Kout and IC50

Kout IC50
. [ _ [ [ _ [ ‘7 [ _ [ _ [ _ [ B [ B [
$10—40 S15-35 ‘525—25 2('35—15 é—}[]—l[] $10—-40 S15-35 625—25 ¢3;5—15 Q'Jr[l—m
RB 5.9 5.0 3.7 8.9 10.4 RB 8.3 5.3 1.5 8.8 12.7




Results: number of different elementary designs (Ngesigns)
and number of datasets with & = ¢, (ngatasets) in two-, three- and

five- stace desien

Designs

Two-stage
§10-40
§15-35
§25-25
§35-15
E:'IO— 10

Three-stage

§10-20-20

§10-10-30

Five-stage

210—10—10—10—10

2"d Stage

24
35
49
47
45

27
28

28

3rd Stage 4th Stage 5th Stage

&* * & *
ndesigns Nyatasets 1‘ldesigns Ngatasets ndesigns Ngatasets ndesigns Ngatasets

60 4 69 4 76
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