Optimization of Sampling Times for PK/PD Models:
Approximation of Elemental Fisher Information Matrix

Valerii Fedorov and Sergei Leonov (GSK Research Statistics Unit)

PODE 2010, Berlin June 11, 2010

Comparison of software tools

PODE 2007, 2009 meetings:

- PFIM (developed in INSERM, Université Paris 7, France);
- PkStaMp (GlaxoSmithKline, Collegeville, U.S.A.);
- PopDes (CAPKR, University of Manchester, UK);
- PopED (Uppsala University, Sweden) and
- WinPOPT (University of Otago, New Zealand).

Key for model-based optimal designs: Fisher information matrix of a properly defined single observational unit

This presentation:

- Some results of comparison at PODE 2009
- Certain options of calculating/approximating FIM

PODE 2009 comparison

Goal: compare results (information matrix) for a particular model and particular sequence of sampling times

Model: one-compartment, 1st order absorption, single dose $D=70 \mathrm{mg}$ at $t=0$

$$
\begin{equation*}
f(x, \gamma)=\frac{D k_{a}}{V\left(k_{a}-k_{e}\right)}\left(e^{-k_{e} x}-e^{-k_{a} x}\right) . \tag{1}
\end{equation*}
$$

Response parameters $\gamma=\left(k_{a}, C L, V\right), k_{e}=C L / V$

Individual parameters

$$
\begin{gather*}
\boldsymbol{\gamma}_{i}=\boldsymbol{\gamma}^{0} e^{\eta_{i}}, \eta_{i} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Omega}), \tag{2}\\
\boldsymbol{\gamma}^{0}=(1,0.15,8), \boldsymbol{\Omega}=\operatorname{diag}(0.6,0.07,0.02)
\end{gather*}
$$

PODE 2009 comparison

Measurements:

$$
\begin{gather*}
y_{i j}=f\left(\gamma_{i}, x_{i j}\right)\left[1+\varepsilon_{M, i j}\right]+\varepsilon_{A, i j} \tag{3}\\
\left\{x_{i j}\right\} \equiv \mathbf{x}=(0.5,1,2,6,24,36,72,120) \text { hours } \\
\varepsilon_{A, i j} \sim \mathcal{N}\left(0, \sigma_{A}^{2}\right), \varepsilon_{M, i j} \sim \mathcal{N}\left(0, \sigma_{M}^{2}\right), \\
\sigma_{A}^{2}=0, \sigma_{M}^{2}=0.01 ; \quad i=1, \ldots, 32 ; j=1, \ldots, 8
\end{gather*}
$$

Combined parameter

$$
\boldsymbol{\theta}=\left(k_{a}^{0}, C L^{0}, V^{0} ; \quad \omega_{k_{a}}^{2}, \omega_{C L}^{2}, \omega_{V}^{2} ; \quad \sigma_{M}^{2}\right)
$$

Individual information matrix $\boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\theta})$

$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ - sequence of sampling times
$\mathbf{Y}=\left[y\left(x_{1}\right), \ldots, y\left(x_{k}\right)\right]^{T}$ - observations
$\mathbf{f}=\mathbf{f}(\mathbf{x}, \boldsymbol{\theta})=\mathbf{E}_{\boldsymbol{\theta}}(\mathbf{Y})=\left[f\left(x_{1}, \boldsymbol{\theta}\right), \ldots, f\left(x_{k}, \boldsymbol{\theta}\right)\right]^{T}$ (mean)
$\mathbf{S}=\mathbf{S}(\mathbf{x}, \boldsymbol{\theta})=\operatorname{Var}_{\boldsymbol{\theta}}(\mathbf{Y})$ (variance)
Key formula for Gaussian observations $\mathbf{Y} \sim \mathcal{N}(\mathbf{f}, \mathbf{S})$:

$$
\begin{align*}
& \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\theta})=\left[\mu_{\alpha \beta}(\mathbf{x}, \boldsymbol{\theta})\right]_{\alpha, \beta=1}^{m}, \quad \text { Magnus and Neudecker (1988) } \\
& \mu_{\alpha \beta}(\mathbf{x}, \boldsymbol{\theta})=\frac{\partial \mathbf{f}}{\partial \theta_{\alpha}} \mathbf{S}^{-1} \frac{\partial \mathbf{f}}{\partial \theta_{\beta}}+\frac{1}{2} \operatorname{tr}\left[\mathbf{S}^{-1} \frac{\partial \mathbf{S}}{\partial \theta_{\alpha}} \mathbf{S}^{-1} \frac{\partial \mathbf{S}}{\partial \theta_{\beta}}\right] . \tag{4}
\end{align*}
$$

Individual information matrix $\boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\theta})$

Once $\boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\theta})$ is calculated (approximated) for any candidate sequence \mathbf{x}, the numerical construction of locally optimal designs is easy!

- Define normalized matrix $\mathbf{M}(\xi, \boldsymbol{\theta})$, who or with costs,

$$
\mathbf{M}(\xi, \boldsymbol{\theta})=\sum_{i} p_{i} \boldsymbol{\mu}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right), p_{i} \in[0,1], \quad \xi=\left\{p_{i}, \mathbf{x}_{i}\right\}
$$

- Specify a criterion of optimality Ψ (D-, A-, c- etc.)
- Solve optimization problem $\Psi\left[\mathrm{M}^{-1}(\xi, \boldsymbol{\theta})\right] \rightarrow \min _{\xi}$ (1st order optimization algorithm in the space of informotion matrices $\boldsymbol{\mu}(\mathrm{x}, \boldsymbol{\theta}), \mathbf{x} \in \mathbf{X}$ - design region)

Information matrix $\boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\theta}) \quad$ (cont.)

- Formula (4) is exact for normal Y only
- Need expressions (approximations?) of \mathbf{f} and \mathbf{S}
- First-order approximation (Taylor series):

$$
\begin{align*}
& \mathbf{E}_{\boldsymbol{\theta}}(\mathbf{Y})=\left[f\left(x_{1}, \gamma^{0}\right), \ldots, f\left(x_{k}, \gamma^{0}\right)\right]^{T}=\mathbf{f}\left(\mathbf{x}, \gamma^{0}\right) \tag{5}\\
& \operatorname{Var}_{\boldsymbol{\theta}}(\mathbf{Y})=\mathbf{S}(\mathbf{x}, \boldsymbol{\theta})=\mathbf{F} \boldsymbol{\Omega} \mathbf{F}^{T}+\sigma_{A}^{2} \mathbf{I}_{k}+ \\
& +\sigma_{M}^{2} \operatorname{Diag}\left[\mathbf{f}\left(\mathbf{x}, \gamma^{0}\right) \mathbf{f}^{T}\left(\mathbf{x}, \gamma^{0}\right)+\mathbf{F} \boldsymbol{\Omega} \mathbf{F}^{T}\right], \tag{6}\\
& \mathbf{F}=\left[\frac{\partial \mathbf{f}\left(\mathbf{x}, \boldsymbol{\gamma}^{0}\right)}{\partial \gamma_{\alpha}}\right]-\left(k \times m_{1}\right) \text {-matrix, } m_{1}=\operatorname{dim}(\boldsymbol{\gamma})=3 \\
& \quad \text { Gagnon and Leonov (2005) }
\end{align*}
$$

Information matrix $\boldsymbol{\mu}(\mathrm{x}, \boldsymbol{\theta}) \quad$ (cont.)

First round of PODE 2009 comparison, expression for FIM: very similar results for coeff. of variation (CV) except k_{a}
(i) PFIM, PopED, WinPOPT: $C V\left(k_{a}\right) \simeq 13.9 \%$
(ii) PkStaMp, PopDes: $C V\left(k_{a}\right) \simeq 4.8 \%$, why such discrepancy??
(iii) Simulations in NONMEM/MONOLIX: $C V\left(k_{a}\right) \simeq 12-13 \%$, why closer to (a)??

Information matrix $\boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\theta}) \quad$ (cont.)

Matrix $\boldsymbol{\mu}$ in (4): block form, Retout and Mentré (2003)

$$
\boldsymbol{\mu}=\left\{\begin{array}{cc}
\mathbf{A} & \mathbf{C} \tag{7}\\
\mathbf{C}^{T} & \mathbf{B}
\end{array}\right\},
$$

$\mathbf{A}=\mathbf{F}^{T} \mathbf{S}^{-1} \mathbf{F}+\frac{1}{2} \operatorname{tr} \quad$ (derivatives wrt γ_{α})
$\mathbf{C}=\frac{1}{2} \operatorname{tr} \quad\left(\right.$ mixed derivatives wrt γ_{α} and $\left.\left[\omega_{\beta}^{2}, \sigma_{M}^{2}\right]\right)$
$\mathbf{B}=\frac{1}{2} \operatorname{tr}$ (derivatives wrt $\left.\left[\omega_{\beta}^{2}, \sigma_{M}^{2}\right]\right)$
PkStaMp in (i): used (5), (6) and FULL matrix $\boldsymbol{\mu}$ in (7)
If (1) Block \mathbf{C} "excluded" ($\mathbf{C}=\mathbf{0}$)
(2) Second term in A (trace) removed
(3) No term $\mathbf{F} \boldsymbol{\Omega} \mathbf{F}^{T}$ in square brackets in (6) \Longrightarrow then exact match with (ii)

Which approximation to choose?

Types of approximation

A1. Log-normal distribution in (2)

- 1st-order approximation, $\mathbf{E} \eta_{i}=0, \operatorname{Var}\left(\eta_{i}\right)=V \Longrightarrow$

$$
\mathbf{E}_{\eta}\left(\theta e^{\eta_{i}}\right) \simeq \theta, \quad \operatorname{Var}_{\eta}\left(\theta e^{\eta_{i}}\right) \simeq \theta^{2} V
$$

- Exact moments:

$$
\mathbf{E}_{\eta}\left(\theta e^{\eta_{i}}\right)=\theta e^{V / 2}, \quad \operatorname{Var}_{\eta}\left(\theta e^{\eta_{i}}\right)=\theta^{2} e^{V}\left(e^{V}-1\right)
$$

- If $\theta=1, V=0.6$ (as for k_{a}), then

$$
\mathbf{E}_{1 s t}=1, \mathbf{E}_{\text {exact }}=1.35 ; \mathbf{V a r}_{1 s t}=0.6, \mathbf{V a r}_{\text {exact }}=1.50
$$

Types of approximation (cont.)

A2. Trace (2nd) term in (4): let

- $k=1$ (single response) and
- $\operatorname{Var}(y)=S=\sigma^{2} f^{2}$ with known σ^{2}; cf. (3)
\Downarrow

$$
\begin{equation*}
\boldsymbol{\mu}=\frac{1}{\sigma^{2}} \frac{\mathbf{F}^{T} \mathbf{F}}{f^{2}}+2 \frac{\mathbf{F}^{T} \mathbf{F}}{f^{2}}=\left(\frac{1}{\sigma^{2}}+2\right) \frac{\mathbf{F}^{T} \mathbf{F}}{f^{2}} \tag{8}
\end{equation*}
$$

To examine the effect of missing 2 nd term on CV , check

$$
\sqrt{\frac{\mu_{\alpha \beta, \text { FULL }}}{\mu_{\alpha \beta, 1 \text { st term }}}}=\sqrt{\frac{2+1 / \sigma^{2}}{1 / \sigma^{2}}}=\sqrt{1+2 \sigma^{2}} \sim 1+\sigma^{2} \Longrightarrow
$$

Inflation coefficient for $\mathrm{CV}: 1+\sigma^{2}, \sigma^{2} \leq 0.25$

Types of approximation (cont.)

A3. Second-order approximation for mean/variance:
Fedorov, Leonov (2005)

$$
\begin{align*}
\mathbf{E}_{\boldsymbol{\theta}}\left[f\left(x, \gamma_{i}\right)\right] & \approx f\left(x, \boldsymbol{\gamma}^{0}\right)+\frac{1}{2} \operatorname{tr}\left[\mathbf{H}\left(\boldsymbol{\gamma}^{0}\right) \boldsymbol{\Omega}\right] \tag{9}\\
\mathbf{H}\left(\gamma^{0}\right)= & {\left.\left[\frac{\partial^{2} f(x, \boldsymbol{\gamma})}{\partial \gamma_{\alpha} \partial \gamma_{\beta}}\right]\right|_{\boldsymbol{\gamma}=\boldsymbol{\gamma}^{0}} \text { etc } \Longrightarrow }
\end{align*}
$$

numerically may be rather tedious

Types of approximation (cont.)

A4. Calculation of mean/variance via Monte Carlo:

$$
\begin{gather*}
\widehat{f}\left(x_{j}\right)=\widehat{\mathbf{E}}_{\boldsymbol{\theta}}\left(y_{i j}\right)=\frac{1}{N} \sum_{i=1}^{N} y_{i j}, \tag{10}\\
\widehat{S}\left(x_{j}\right)=\widehat{\operatorname{Var}}_{\boldsymbol{\theta}}\left(y_{i j}\right)=\frac{1}{N} \sum_{i=1}^{N}\left[y_{i j}-\widehat{f}\left(x_{j}\right)\right]^{2} \Longrightarrow
\end{gather*}
$$

Numerically straightforward: valid option if normal approximation is "reasonable" (??)

Comparison of approximation options

Figure 1: Mean response curves for PODE 2009 example. Solid - 1st order approximation, dashed - computed at mean values of log-normal distribution, dotted - Monte Carlo average as in (10)

For a single response parameter, $m=1$:

$$
\mathbf{E}_{\theta}\left[f\left(x, \theta_{i}\right)\right] \approx f\left(x, \theta^{0}\right)+\frac{1}{2} f^{\prime \prime}(x, \theta) \operatorname{Var}(\theta)
$$

Comparison of approximation options

Figure 2: Mean response curves and variance. Legend similar to Fig. 1

References

[1] Atkinson, A.C., and Donev, A. (1992), Optimum Experimental Design. Clarendon Press, Oxford.
[2] Fedorov, V.V. (1972), Theory of Optimal Experiment. Academic Press, New York.
[3] Fedorov, V.V., and Hackl, P. (1997), Model-Oriented Design of Experiments. Springer, NY.
[4] Fedorov, V.V., Leonov, S.L. (2005), Response driven designs in drug development. In: Wong, W.K., Berger, M.P.F. (Eds.), Applied Optimal Designs, Wiley, Chichester, pp. 103-136.
[5] Fedorov, V.V., and Leonov, S.L. (2007), Population pharmacokinetic measures, their estimation and selection of sampling times, J. Biopharm. Stat., 17(5), 919-941.
[6] Gagnon, R., and Leonov, S.L. (2005), Optimal population designs for PK models with serial sampling. J. Biopharm. Stat., 15 (1), 143-163.
[7] Magnus, J.R., and Neudecker, H. (1988), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley, NY.
[8] Mentré, F., Duffull, S., Gueorguieva, I., Hooker, A., Leonov, S., Ogungbenro, K., Retout, S. (2007). Software for optimal design in population pharmacokinetics and pharmacodynamics: a comparison In: Abstracts of the Annual Meeting of the Population Approach Group in Europe (PAGE). ISSN 1871-6032, http://www.page-meeting.org/?abstract=1179
[9] Retout, S., and Mentré, F. (2003), Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics. J. Biopharm. Stat.,13 (2), 209-227.

