TOPICS IN THE DESIGN OF EXPERIMENTS PART 2: SEQUENTIAL DESIGN Exercise Sheet

Please try to attempt all of the questions. You should not hand in your solutions for marking, but you are welcome to discuss them with me during my office hours.

1. A clinician has to decide whether or not to recommend a new drug in the treatment of a rare disease. There is a standard drug which is successful in about 40% of the cases treated, but it is hoped that the new drug will do better, although it is more expensive and can have occasional side-effects. The clinician agrees to treat a sequence of patients with the new drug and to apply a sequential probability ratio test to the results. If the new drug has a success rate of 70%, then the test should accept it with probability 0.98 , but if the success rate is only 35%, then the test should accept it with probability only 0.01 . Thus, the respective values of α and β are 0.01 and 0.02 .
(a) Construct a sequential probability ratio test with approximately the above error probabilities.
(b) Find the approximate expected sample size when the true success rate for the new drug is 70%.
(c) Suppose that S denotes a 'success' and F a 'failure'. Use a graph to carry out the test in part (a) when the responses for the first 16 patients are as follows: $\mathrm{F}, \mathrm{S}, \mathrm{S}, \mathrm{F}$, F, S, F, S, S, S, S, S, S, S, S, F.
2. Suppose that X_{1}, X_{2}, \ldots is a sequence of independent and identically distributed random variables with finite mean μ and finite variance σ^{2}. Let $S_{n}=\sum_{k=1}^{n} X_{k}$ and let N be a stopping time such that $P(N<\infty)=1$.
(a) Prove that Wald's fundamental identity is a special case of Theorem 3.
(b) Assuming that differentiation under the expectation can be justified, differentiate Wald's fundamental identity with respect to t at $t=0$ to reproduce Theorem 1 .
(c) By differentiating Wald's fundamental identity twice with respect to t at $t=0$, show that $E\left\{\left(S_{N}-N \mu\right)^{2}\right\}=\sigma^{2} E(N)$.
3. Consider a group sequential test that stops at stage

$$
T=\min \left\{\text { first } k \geq 1 \text { such that } Z_{k} \notin\left(a_{k}, b_{k}\right), K\right\},
$$

where Z_{k} denotes the standardised test statistic calculated from the first k groups of observations, and a_{k} and b_{k} are the critical values for the k th analysis for $k=1,2, \ldots, K$. Assume that the sequence of test statistics $\left\{Z_{1}, \ldots, Z_{K}\right\}$ have the canonical joint distribution with information levels $\left\{\mathcal{I}_{1}, \ldots, \mathcal{I}_{K}\right\}$ for the parameter θ.
(a) By writing down the joint density of $\left(Z_{1}, \ldots, Z_{k}\right)$, show that the maximum likelihood estimator of θ is $\hat{\theta}=Z_{T} / \sqrt{\mathcal{I}_{T}}$.
(b) Derive an expression for the variance of $\hat{\theta}$.
(c) Now consider a two-stage test in which the critical values for the first analysis are a and b. Obtain the form of the bias of $\hat{\theta}$ in this case.
4. Let $X_{A 1}, X_{A 2}, \ldots$ be independent exponential random variables with parameter λ_{A} and let $X_{B 1}, X_{B 2}, \ldots$ be independent exponential random variables with parameter λ_{B}. The parameter of interest is $\theta=\log \left(\lambda_{A} / \lambda_{B}\right)$, and interest lies in testing $H_{0}: \theta=0$ against $H_{1}: \theta \neq 0$.
(a) Derive the approximate information level at analysis k and give the standardised statistics for testing H_{0} for $k=1,2, \ldots, K$.
(b) Find the maximum information level for an O'Brien and Fleming test with type I error probability $\alpha=0.05$, power $1-\beta=0.9$ when $\theta= \pm 0.75$ and a maximum of $K=6$ analyses.
(c) Obtain the group size and critical values for the test.
5. Consider a a two-treatment clinical trial in which the responses are independent with variance σ^{2}. Then the covariance matrix of the estimated means after n assignments is $\sigma^{2} \operatorname{diag}\left(1 / n_{1 n}, 1 / n_{2 n}\right)$, where $n_{j n}$ denotes the number of patients on treatment j for $j=1,2$.
(a) State which criterion the D-optimal design minimises, and hence show that this design assigns the next patient to treatment 1 if $n_{2 n}>n_{1 n}$ and to treatment 2 if $n_{1 n}>n_{2 n}$.
(b) Construct a biased coin design from this deterministic design and state the asymptotic properties of $N_{1 n} / n$. How does the asymptotic variance of $N_{1 n} / n$ for this design compare with that of complete randomisation?
(c) Derive the D-optimal design if the variance of the responses on treatment j is σ_{j}^{2} for $j=1,2$.
6. Suppose that the responses in a two-treatment clinical trial are binary and that the probability of success for treatment j is p_{j} for $j=1,2$. Assume that the usual largesample Z test is used.
(a) Show that the allocation that minimises the total sample size subject to a fixed power is

$$
\rho=\frac{\sqrt{p_{1} q_{1}}}{\sqrt{p_{1} q_{1}}+\sqrt{p_{2} q_{2}}}
$$

where $q_{j}=1-p_{j}$ for $j=1,2$.
(b) Explain how a sequential maximum likelihood estimation rule may be constructed for this target allocation and state the asymptotic properties of $N_{1 n} / n$.
(c) Verify that the lower bound on the asymptotic variance of the allocation proportions for this target allocation is $B\left(p_{1}, p_{2}\right) / n$, where

$$
B\left(p_{1}, p_{2}\right)=\frac{1}{4\left(\sqrt{p_{1} q_{1}}+\sqrt{p_{2} q_{2}}\right)^{3}}\left\{\frac{p_{2} q_{2}\left(q_{1}-p_{1}\right)^{2}}{\sqrt{p_{1} q_{1}}}+\frac{p_{1} q_{1}\left(q_{2}-p_{2}\right)^{2}}{\sqrt{p_{2} q_{2}}}\right\} .
$$

