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1 Introduction

1.1 Topics to be covered

Part 1 of this course showed how an experiment may be designed optimally when the number
of observations is fixed in advance. The main focus was the application of this theory to non-
linear models and the construction of D-optimal designs. In this part, we are concerned
with sequential designs, where the number of observations to be taken is not fixed in advance
or the design points are chosen sequentially depending on the current data.

We first introduce the sequential probability ratio test for testing two simple hypotheses
and study several of its properties. Since this is a fully sequential design, in that a test is
performed after every observation, we then introduce group sequential designs and show how
these may be carried out in practice. Finally, we study some adaptive treatment allocation
rules, where the treatment allocation probabilities are functions of the current data.

1.2 Examples of sequential designs

A sequential design is often more efficient than an equivalent fixed-sample one. The
examples below demonstrate the wide range of applications of a sequential approach.

Example. Curtailed test.
Suppose that a machine produces items which may be judged good or defective, and that the
true proportion of defectives in a large batch is p. Let Sm denote the number of defectives in
a random sample of size m. Consider testing H0 : p ≤ p0 against H1 : p > p0. A reasonable
rule is to reject H0 if Sm ≥ r for some constant r.
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Now let T be the smallest value of k for which Sk = r and put T ′ = min(T,m). Consider
the procedure which stops sampling at the random time T ′ and decides that p > p0 if
and only if T ≤ m. If one considers these two procedures as tests of H0 against H1, their
rejection regions, namely, {T ≤ m} and {Sm ≥ r}, are the same events, and hence the two
tests have the same power function. Clearly, the test which stops at the random time T ′

has a reasonable claim to be regarded as more efficient.

Example. Repeated significance test.
Let X1, X2, . . . be independent normal random variables with unknown mean µ and unit
variance. Consider testing H0 : µ = 0 against H0 : µ 6= 0. The the standard fixed-sample
0.05 level significance test rejects H0 if and only if |Sn| ≥ 1.96

√
n, where Sn =

∑n
k=1 xk.

Now suppose that, if H1 is true, a minimum amount of experimentation is desired, but
no similar constraint exists under H0. Let b > 0 and let m be a maximum sample size.
Sample sequentially, stopping with rejection of H0 at the first n ≤ m, if one exists, such that
|Sn| ≥ b

√
n. Otherwise, stop sampling at m and accept H0. The significance level of this

procedure is
α = α(b,m) = P0(|Sn| ≥ b

√
n for some n ≤ m),

where P0 denotes probability under H0. Clearly, b must be somewhat larger than 1.96,
depending on m, in order that α(b,m) = 0.05.

2 The sequential probability ratio test (SPRT)

2.1 Definitions

Let X1, X2, . . . be a sequence of random variables with joint probability density functions

P (X1 ∈ dξ1, . . . , Xn ∈ dξn) = fn(ξ1, . . . , ξn)dξ1 . . . dξn

for n = 1, 2, . . .. Consider testing the simple hypotheses H0 : fn = f0n for all n against
H1 : fn = f1n for all n. The likelihood ratio is

`n = `n(x1, . . . , xn) =
f1n(x1, . . . , xn)

f0n(x1, . . . , xn)
.

The sequential probability ratio test (SPRT) chooses constants 0 < A < B < ∞,
usually A < 1 < B, and samples x1, x2, . . . sequentially until the random time

N = first n ≥ 1 such that `n 6∈ (A,B)

= ∞ if `n ∈ (A,B) for all n ≥ 1.

The test stops sampling at time N and, if N < ∞, rejects H0 if `N ≥ B and accepts H0 if
`N ≤ A.

Assuming temporarily that Pi(N <∞) = 1 for i = 0, 1, where Pi denotes probability under
Hi, the above test has significance level α = P0(`N ≥ B) and power 1−β = P1(`N ≥ B).
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In the fixed-sample case, the Neyman-Pearson lemma tells us that, among all tests with
the same significance level, the likelihood ratio test has the highest power.

2.2 Properties of the SPRT

Let Bn denote the subset of n-dimensional space in which A < `k(ξ1, . . . , ξk) < B for
k = 1, 2, . . . , n− 1 and `n(ξ1, . . . , ξn) ≥ B, so that

{N = n, `n ≥ B) = {(x1, . . . , xn) ∈ Bn}.

Then

α = P0(`N ≥ B) =
∞∑

n=1

P0(N = n, `n ≥ B)

=
∞∑

n=1

∫
Bn

f0ndξ1 . . . dξn

=
∞∑

n=1

∫
Bn

f0n

f1n

f1ndξ1 . . . dξn

=
∞∑

n=1

E1

(
`−1
n ;N = n, `n ≥ B

)
= E1

(
`−1
N ; `N ≥ B

)
≤ B−1P1(`N ≥ B) = B−1(1− β).

Similarly,
β = P1(`N ≤ A) ≤ AP0(`N ≤ A) = A(1− α).

Treating the above inequalities as approximate equalities and solving for α and β leads to
the simple approximations

α ' 1− A

B − A
and β ' A(B − 1)

B − A
.

Theorem 1. Wald’s equation.
Let X1, X2, . . . be independent and identically distributed random variables with finite mean
µ. Let M be any integer-valued random variable such that {M = n} is an event determined
only by X1, . . . , Xn for all n = 1, 2, . . ., and assume that E(M) <∞. Then

E

(
M∑

k=1

Xk

)
= µE(M).

Proof. Suppose initially that X ≥ 0. Write

M∑
k=1

Xk =
∞∑

k=1

1{M≥k}Xk
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and note that

{M ≥ k} =

k−1⋃
j=1

{M = j}

c

is independent of Xk, Xk+1, . . .. Hence, by the monotone convergence theorem, we have
that

E

(
M∑

k=1

Xk

)
=

∞∑
k=1

E(Xk;M ≥ k) = µ
∞∑

k=1

P (M ≥ k) = µE(M).

For the general case, write
M∑

k=1

Xk =
M∑

k=1

X+
k −

M∑
k=1

X−
k ,

where a+ = max(a, 0) and a− = −min(a, 0), and apply the above case to these two terms
separately. 2

Suppose that X1, X2, . . . are independent and identically distributed random variables, so
that

`n =
n∏

k=1

f1(xk)

f0(xk)
,

where fi is the probability density function of X under Hi for i = 0, 1. Then

log `n =
n∑

k=1

log

{
f1(xk)

f0(xk)

}

is a sum of independent and identically distributed random variables. Further, the stopping
rule for the SPRT may be written as

N = first n ≥ 1 such that log `n 6∈ (a, b)

= ∞ if log `n ∈ (a, b) for all n,

where a = logA and b = logB. Now, by Theorem 1,

Ei(log `N) = µiEi(N),

where µi = Ei[log{f1(X)/f0(X)}] for i = 0, 1. Also, we may write

Ei(log `N) ' aPi(`N ≤ A) + bPi(`N ≥ B).

Combining these two equations yields the approximations

E0(N) ' 1

µ0

{
a
(B − 1)

B − A
+ b

(1− A)

B − A

}

and

E1(N) ' 1

µ1

{
a
A(B − 1)

B − A
+ b

B(1− A)

B − A

}
.
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Alternatively, we may write

E0(N) ' 1

µ0

{
(1− α) log

(
β

1− α

)
+ α log

(
1− β

α

)}

and

E1(N) ' 1

µ1

{
β log

(
β

1− α

)
+ (1− β) log

(
1− β

α

)}
.

The following result, which is stated without proof, shows that the SPRT terminates with
probability one.

Theorem 2. Stein’s lemma.
Let Y1, Y2, . . . be independent and identically distributed random variables with the property
P (Y = 0) < 1. Let −∞ < a < b <∞ and Sn =

∑n
k=1 Yk, and define

M = first n ≥ 1 such that Sn 6∈ (a, b)

= ∞ if Sn ∈ (a, b) for all n.

Then there exist constants C > 0 and 0 < ρ < 1 such that P (M > n) ≤ Cρn for n = 1, 2, . . ..
In particular, E(Mk) <∞ for all k = 1, 2, . . . and E(eλM) <∞ for λ < log(ρ−1).

Theorem 3. Wald’s likelihood ratio identity.
Let X1, X2, . . . be an arbitrary sequence of random variables and suppose that there exists
a likelihood ratio `n for x1, . . . , xn under P1 relative to P0 such that

E1(Yn) = E0(Yn`n),

where Yn = g(X1, . . . , Xn) for some function g. Then, for any stopping time N and non-
negative random variable Y = g(X1, . . . , XN), say,

E1(Y ;N <∞) = E0(Y `N ;N <∞).

In particular, if Y = 1A, then

P1[A ∩ {N <∞}] = E0[`N ;A ∩ {N <∞}].

Proof. We have that

E1(Y ;N <∞) =
∞∑

n=1

E1(Y ;N = n)

=
∞∑

n=1

E0(Y `n;N = n)

= E0(Y `N ;N <∞),
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as required. 2

Note that we have already used Theorem 3 to obtain the approximations for the error
probabilities α and β. The following result is a special case of Theorem 3 and is stated
without proof.

Corollary. Wald’s fundamental identity.
Let X1, X2, . . . be a sequence of independent and identically distributed random variables
and suppose that φ(t) = E(etX) < ∞ for some t 6= 0. Then, if N is a stopping time such
that P (N <∞) = 1,

E
[
{φ(t)}−NetSN

]
= 1,

where SN =
∑N

k=1Xk.

If φ(t) < ∞ for |t| < δ, where δ > 0, then the above identity may be differentiated with
respect to t at t = 0 to reproduce Theorem 1, provided that differentiation under the
expectation can be justified: see Exercise 2.

When testing a simple hypothesis against a simple alternative with independent and identi-
cally distributed observations, the Wald-Wolfowitz theorem states that the SPRT min-
imises Ei(N) for i = 0, 1, among all tests having no larger error probabilities. For cases
where the results for expected sample size are exact, Theorem 5 contains a complete proof.

Theorem 5. Let T be the stopping time of any test of H0 : f = f0 against H1 : f = f1 with
error probabilities α and β, 0 < α, β < 1. Assume that Ei(T ) <∞ for i = 0, 1. Then

E1(T ) ≥ 1

µ1

{
(1− β) log

(
1− β

α

)
+ β log

(
β

1− α

)}

and

E0(T ) ≥ 1

µ0

{
α log

(
1− β

α

)
+ (1− α) log

(
β

1− α

)}
,

where

µi = Ei

[
log

{
f1(X)

f0(X)

}]
for i = 0, 1.

Proof. Let R = {Reject H0} and Rc = {Accept H0}. Then, by Theorem 3,

α = P0(R) = E1

(
`−1
T ;R

)
= E1

(
e− log `T |R

)
P1(R)

≥ exp{−E1(log `T |R)}(1− β)

= exp{−E1(log `T ;R)/(1− β)}(1− β),
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where the penultimate line is due to Jensen’s inequality. Thus,

(1− β) log

(
α

1− β

)
≥ −E1(log `T ;R).

Similarly,

β log

(
1− α

β

)
≥ −E1(log `T ;Rc).

Hence, by Theorem 1,

(1− β) log

(
α

1− β

)
+ β log

(
1− α

β

)
≥ −E1(log `T )

= −µ1E1(T ).

Since µ1 > 0, this completes the proof of the first assertion. The second assertion is proved
similarly. 2

2.3 Estimation following the SPRT

The estimation of a parameter when the data have been obtained from a SPRT is a difficult
problem. Even sequentially stopped versions of ordinarily unbiased estimators are biased,
and their sampling distributions are often quite complicated. The following result, which
is stated without proof, shows that randomly stopped averages are asymptotically normally
distributed under quite general conditions.

Theorem 6. Anscombe-Doeblin theorem.
Let X1, X2, . . . be independent and identically distributed random variables with finite mean
µ and finite positive variance σ2. Let Sn =

∑n
k=1Xk and suppose that Mc, c ≥ 0, are positive

integer-valued random variables such that, for some constants mc → ∞, Mc/mc → 1 in
probability as c→∞. Then

P

SMc − µMc

σM
1
2
c

≤ x

→ Φ(x)

as c→∞, where Φ denotes the standard normal distribution function.

It follows from Theorem 6 that N− 1
2 (SN −Nµ)/σ is approximately standard normal. Thus,

an approximate 95% confidence interval for µ for large a and b is given by

SN

N
± 1.96

σ

N
1
2

.

However, this approximation is very poor for moderate values of a and b.
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2.4 Examples of the SPRT

Let N be the stopping time for the SPRT. Then, from Theorem 2, Pi(N < ∞) = 1 for
i = 0, 1.

Example. Let X1, X2, . . . be independent normal random variables with mean µ and unit
variance. Consider testing H0 : µ = µ0 against H1 : µ = µ1, where µ0 < µ1. The likelihood
ratio is

`n =
n∏

k=1

φ(xk − µ1)

φ(xk − µ0)

= exp
{
(µ1 − µ0)Sn −

n

2
(µ2

1 − µ2
0)
}
,

where φ(x) = (2π)−
1
2 exp(−x2/2) and Sn =

∑n
k=1 xk. Hence, the stopping rule for the SPRT

is given by
N = first n ≥ 1 such that Sn − n

2
(µ1 + µ0) 6∈ (a, b),

where a = logA/(µ1 − µ0) and b = logB/(µ1 − µ0). Note that, in the symmetric case,
µ1 = −µ0 and b = −a, and we have that

N = first n ≥ 1 such that |Sn| ≥ b.

Example. Let X1, X2, . . . be independent random variables with Pp(X = 1) = p and
Pp(X = −1) = q, where p + q = 1. Consider testing H0 : p = p0 against H1 : p = p1, where
p0 < p1. The likelihood ratio is

`n =

(
p1

p0

)n+Sn
2
(
q1
q0

)n−Sn
2

=

(
p1q0
p0q1

)Sn
2
(
p1q1
p0q0

)n
2

,

where Sn =
∑n

k=1 xk. Note that, in the symmetric case, p0 = q1 and B = A−1, the stopping
rule for the SPRT is given by

N = first n ≥ 1 such that |Sn| ≥ b,

where b = logB/ log(q0/p0).

3 Group sequential tests

3.1 Analysing the data in groups

The SPRT is an example of a fully sequential test, since a test is performed after every
observation. In practice, especially in the context of clinical trials, it is more convenient
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to analyse the data after groups of observations. In fact, a group sequential approach can
often achieve most of the efficiency gains of an analogous fully sequential one. In this course,
group sequential tests are described in the context of two-treatment clinical trials.

Let XA1, XA2, . . . and XB1, XB2, . . . denote the responses of subjects assigned to two treat-
ments, A and B. Interest lies in testing the null hypothesis of no treatment difference
H0 : θ = 0 against the two-sided alternative H1 : θ 6= 0 that there is a treatment difference
with type I error probability α and power 1 − β when θ = ±δ. Suppose that there are a
maximum of K groups and that m denotes the group size.

For k = 1, 2, . . . , K, a standardised test statistic Zk is calculated from the first k groups
of observations and H0 is rejected if Zk 6∈ (ak, bk), where ak and bk denote the critical
values for the kth analysis. If the test continues to the Kth analysis and ZK ∈ (aK , bK), it
terminates and H0 is accepted. The critical values are chosen to achieve the required type I
error probability and the power condition determines the group size.

3.2 Designing a group sequential test

Suppose that a group sequential test with a maximum of K analyses yields the sequence
of test statistics {Z1, . . . , ZK}. These statistics are said to have the canonical joint dis-
tribution with information levels {I1, . . . , IK} for the parameter θ if (i) (Z1, . . . , ZK) is

multivariate normal, (ii) E(Zk) = θ
√
Ik, k = 1, 2, . . . , K, and (iii) cov(Zk1 , Zk2) =

√
Ik1/Ik2 ,

1 ≤ k1 ≤ k2 ≤ K. The fact that this implies that {Z1, . . . , ZK} is a Markov sequence
simplifies the calculations. Let ∆k = Ik − Ik−1 for k = 2, 3, . . . , K. Then Z1 ∼ N(θ

√
I1, 1),

and, for each k = 2, 3, . . . , K,

Zk

√
Ik − Zk−1

√
Ik−1 ∼ N(θ∆k,∆k)

independently of Z1, . . . , Zk−1.

A key quantity to calculate for a group sequential test is the probability of crossing a specific
stopping boundary at a particular analysis. For each k = 1, 2, . . . , K, let

ψk(a1, b1, . . . , ak, bk; θ) = Pθ(a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk ≥ bk)

and

ξk(a1, b1, . . . , ak, bk; θ) = Pθ(a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk ≤ ak).

Now, Z1 has density

f1(z1; θ) = φ(z1 − θ
√
I1).

Further, the conditional density of Zk given Z1 = z1, . . . , Zk−1 = zk−1 depends only on zk−1

and is

fk(zk−1, zk; θ) =

√
Ik√
∆k

φ

(
zk

√
Ik − zk−1

√
Ik−1 − θ∆k√

∆k

)
.
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Hence, for each k = 2, 3, . . . , K,

ψk(a1, b1, . . . , ak, bk; θ) =
∫ b1

a1

. . .
∫ bk−1

ak−1

∫ ∞

bk

f1(z1; θ)f2(z1, z2; θ) . . . fk(zk−1, zk; θ)dzk . . . dz1

=
∫ b1

a1

. . .
∫ bk−1

ak−1

f1(z1; θ)f2(z1, z2; θ) . . . fk−1(zk−2, zk−1; θ)

×ek−1(zk−1, bk; θ)dzk−1 . . . dz1,

where

ek−1(zk−1, bk; θ) = Φ

(
zk−1

√
Ik−1 + θ∆k − bk

√
Ik√

∆k

)
.

A similar expression can be obtained for ξk(a1, b1, . . . , ak, bk; θ).

Although the above multiple integral appears difficult, it can be rewritten to simplify the
computation. To see this, let gk(zk; θ), k = 1, 2, . . . , K, denote the sub-densities of
Z1, . . . , ZK , their integrals being less than unity for k > 1 due to early stopping at stages
1, 2, . . . , k − 1. In other words,

g1(z1; θ) = f1(z1; θ)

and

gk(zk; θ) =
∫ bk−1

ak−1

gk−1(zk−1; θ)fk(zk−1, zk; θ)dzk−1

for k = 2, 3, . . . , K. It then follows that we can write

ψk(a1, b1, . . . , ak, bk; θ) =
∫ ∞

bk

gk(zk; θ)dzk

=
∫ bk−1

ak−1

∫ ∞

bk

gk−1(zk−1; θ)fk(zk−1, zk; θ)dzkdzk−1

=
∫ bk−1

ak−1

gk−1(zk−1; θ)ek−1(zk−1, bk; θ)dzk−1.

Thus, the computation only requires a succession of univariate integrations.

The values of ψk(a1, b1, . . . , ak, bk; θ) and ξk(a1, b1, . . . , ak, bk; θ) for k = 1, 2, . . . , K determine
the distribution of the stopping time and associated decision for a group sequential test.
From these, we can obtain the test’s error probabilities for any θ. For example, the test’s
type I error probability is

Pθ=0(Reject H0) =
K∑

k=1

{ψk(a1, b1, . . . , ak, bk; 0) + ξk(a1, b1, . . . , ak, bk; 0)}.

Similarly, the test’s power when θ = δ is

Pθ=δ(Reject H0) =
K∑

k=1

{ψk(a1, b1, . . . , ak, bk; δ) + ξk(a1, b1, . . . , ak, bk; δ)}

'
K∑

k=1

ψk(a1, b1, . . . , ak, bk; δ)

11



if δ > 0 is large. The approximate power when θ = −δ has the same form, but with ψk

replaced with ξk and δ with −δ. For specified values of K and the type I error probability
α, a numerical search can be used to find the ak and bk.

Recall that a fixed-sample test of H0 : θ = 0 against H1 : θ 6= 0 with type I error probability
α and power 1− β at θ = ±δ has information

If,2 =
{Φ−1(1− α/2) + Φ−1(1− β)}2

δ2
.

Then a group sequential test requires a larger maximum sample size and we set a maximum
information level, Imax = RIf,2, where R > 1 and depends on K, α, β and the type of
group sequential boundary being used. With equally-spaced information levels, we have

Ik =
k

K
Imax, k = 1, 2, . . . , K.

By finding the value Imax such that the test’s power is 1−β for this sequence of information
levels, we can obtain R.

The above calculations can be used to design group sequential tests with specific properties.
For example, the Wang and Tsiatis family of two-sided tests are indexed by a parameter
∆, which gives boundaries of different shapes. Members of this family include the Pocock
test with constant critical values and the O’Brien and Fleming test with converging critical
values. The test with parameter ∆ has boundaries of the form

ak = −c
(
k

K

)∆− 1
2

and bk = c

(
k

K

)∆− 1
2

.

Taking ∆ = 1/2 gives Pocock’s test and ∆ = 0 gives the O’Brien and Fleming test.

3.3 Inference following a group sequential test

The group sequential test stops at stage

T = min{first k ≥ 1 such that Zk 6∈ (ak, bk), K}.

Now, the sequence of test statistics {Z1, . . . , ZK} has the same joint distribution as the
sequence {(Y1 + . . . + Yk)/

√
Ik; k = 1, 2, . . . , K}, where the Yk are independent such that

Yk ∼ N(∆kθ,∆k). The structure of the joint density of (Z1, . . . , ZK) shows that (T, ZT ) is a
pair of sufficient statistics for θ and that the maximum likelihood estimator of θ is given
by θ̂ = ZT/

√
IT : see Exercise 3. Although the form of the maximum likelihood estimator is

the same as for a fixed-sample test, its sampling distribution is more complicated.

The sampling density of θ̂ at θ̂ = y is given by

K∑
k=1

gk(y
√
Ik; θ)

√
Ik1y

√
Ik 6∈(ak,bk),
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where the contributions from the K sub-densities yield a multi-modal density with a peak
for each value of T ∈ {1, 2, . . . , K}. This means that the density is completely different to
a normal with mean θ and variance I−1

T , which it would be for a fixed-sample test. As a
result, θ̂ is now a biased estimator of θ. More specifically, we can write

Eθ(θ̂) =
K∑

k=1

{∫ ak

−∞
gk(zk; θ)

zk√
Ik

dzk +
∫ ∞

bk

gk(zk; θ)
zk√
Ik

}
dzk.

An expression can also be obtained for the variance of θ̂.

As before, the above integrals can be rewritten to simplify the computation. For example,
the first integral can be written as∫ ak

−∞
gk(zk; θ)

zk√
Ik

dzk =
∫ bk−1

ak−1

∫ ak

−∞
gk−1(zk−1; θ)fk(zk−1, zk; θ)

zk√
Ik

dzkdzk−1

=
∫ bk−1

ak−1

gk−1(zk−1; θ)rk−1(zk−1, ak; θ)dzk−1,

where

rk−1(zk−1, ak; θ) = −
√

∆k

Ik

φ

(
ak

√
Ik − zk−1

√
Ik−1 − θ∆k√

∆k

)

+
(zk−1

√
Ik−1 + θ∆k)

Ik

Φ

(
ak

√
Ik − zk−1

√
Ik−1 − θ∆k√

∆k

)
.

The second integral can be computed in a similar way.

Upon termination of the group sequential test, rather than just concluding that we accept or
reject H0, we can report the p-value of the observed data for testing H0. Now, the sample
space Ω defined by the group sequential design is the set of all pairs (k, z), where z 6∈ (ak, bk),
so that the test can terminate with (T, ZT ) = (k, z). Let the observed value of (T, ZT ) be
denoted by (k∗, z∗). Then the p-value is

Pθ=0{Obtain (k, z) as extreme or more extreme than (k∗, z∗)}.

In order to calculate this, we need to specify the ordering of Ω. We write (k′, z′) � (k, z) to
denote that (k′, z′) is above (k, z) in a given ordering.

There are a number of orderings available. In stage-wise ordering, (k′, z′) � (k, z) if any of
the following conditions hold: (i) k′ = k and z′ ≥ z; (ii) k′ < k and z′ ≥ bk′ ; (iii) k′ > k and
z ≤ ak. As an example, suppose that the test terminates after crossing the upper boundary.
Then the one-sided upper p-value is

Pθ=0{(T, ZT ) � (k∗, z∗)} =
k∗−1∑
j=1

ψj(a1, b1, . . . , aj, bj; 0)+ψk∗(a1, b1, . . . , ak∗−1, bk∗−1, ak∗ , z
∗; 0).
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One-sided lower p-values are found in the same manner and the two-sided p-value is twice
the smaller of these two quantities.

Equal-tailed 100(1−α)% confidence intervals for θ can be obtained by inverting a family of
hypothesis tests with two-sided type I error probability α. For any given value θ0, we can
find pairs (ku(θ0), zu(θ0)) and (k`(θ0), z`(θ0)) such that

Pθ=θ0{(T, ZT ) � (ku(θ0), zu(θ0))} =
α

2

and
Pθ=θ0{(T, ZT ) � (k`(θ0), z`(θ0))} =

α

2
.

It follows that the acceptance region

A(θ0) = {(k, z) : (k`(θ0), z`(θ0)) ≺ (k, z) ≺ (ku(θ0), zu(θ0))}

defines a two-sided hypothesis test of θ = θ0 with type I error probability α. This implies
that the set {θ : (T, ZT ) ∈ A(θ)} obtained by inverting this family of tests is a 100(1− α)%
equal-tailed confidence set for θ. If Pθ{(T, ZT ) � (k, z)} is an increasing function of θ for
each (k, z) ∈ Ω, then this set is an interval.

3.4 Examples of group sequential designs

Two examples are now given to show how group sequential designs may be constructed in
practice.

Example. Let XA1, XA2, . . . be independent normal random variables with mean µA and
unit variance and let XB1, XB2, . . . be independent normal random variables with mean µB

and unit variance. For k = 1, 2, . . . , K, let nAk and nBk denote the cumulative number of
observations on treatments A and B, respectively, at the time of the kth analysis. Then the
parameter of interest is θ = µA − µB and its natural estimator is

X
(k)
A −X

(k)
B =

1

nAk

nAk∑
i=1

XAi −
1

nBk

nBk∑
i=1

XBi ∼ N(θ, I−1
k ),

where

Ik =
(

1

nAk

+
1

nBk

)−1

is the information for θ. So the standardised statistic at analysis k for testing H0 : θ = 0 is

Zk =
{
X

(k)
A −X

(k)
B

}√
Ik

for k = 1, 2, . . . , K.

It is easily verified that the above statistics have the canonical joint distribution with in-
formation levels {I1, . . . , IK} for θ. Firstly, (Z1, . . . , ZK) is multivariate normal, since each

14



Zk is a linear combination of the independent normal random variables XAi and XBi for
i = 1, 2, . . .. Secondly, we know that Zk ∼ N(θ

√
Ik, 1). Lastly, for k1 ≤ k2,

cov(Zk1 , Zk2) = cov
[{
X

(k1)
A −X

(k1)
B

}√
Ik1 ,

{
X

(k2)
A −X

(k2)
B

}√
Ik2

]
=

(
1

nAk1

1

nBk2

nAk1 +
1

nBk1

1

nAk2

nBk1

)√
Ik1

√
Ik2

= I−1
k2

√
Ik1

√
Ik2 =

√
Ik1/Ik2 ,

as required.

Now suppose that we wish to test H0 : θ = 0 against H1 : θ 6= 0 with type I error probability
α = 0.05 and power 1−β = 0.90 when θ = ±0.5. We will use a Pocock test with a maximum
of K = 5 analyses. The information for θ required by a fixed-sample test with these error
probabilities is

If,2 =
{Φ−1(0.975) + Φ−1(0.9)}2

0.52
= 42.032

and the maximum information level for the group sequential test can be shown to be

RP (5, 0.05, 0.1)× If,2 = 1.207× 42.032 = 50.7.

Assuming that nAk = nBk for each k = 1, 2, . . . , 5, we see that I5 = n5/2, where n5 denotes
the common value of nA5 and nB5. Thus, solving I5 = 50.7 yields n5 = 101.4, which we
round to 110 to obtain a multiple of 10. This means that five groups of 11 observations
per treatment should be planned. It may also be shown that H0 is rejected at analysis k if
|Zk| ≥ 2.413, k = 1, 2, . . . , 5.

Example. Let XA1, XA2, . . . be independent Bernoulli random variables with parameter pA

and let XB1, XB2, . . . be independent Bernoulli random variables with parameter pB. Then

the parameter of interest is θ = pA−pB and its natural estimator is p̂
(k)
A − p̂(k)

B = X
(k)
A −X(k)

B .
Let p = (pA + pB)/2. Then, under H0, pA = pB = p, and the information for θ is

Ik =
{
p(1− p)

(
1

nAk

+
1

nBk

)}−1

.

Estimating p by

p̃k =

∑nAk
i=1 XAi +

∑nBk
i=1 XBi

nAk + nBk

,

we obtain the estimated information level at analysis k given by

Îk =
{
p̃k(1− p̃k)

(
1

nAk

+
1

nBk

)}−1

for k = 1, 2, . . . , K. So the standardised statistics for testing H0 are

Zk =
{
p̂

(k)
A − p̂

(k)
B

}√
Îk
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for k = 1, 2, . . . , K. If θ is small, these statistics can be shown to follow approximately the
canonical joint distribution with information levels {Î1, . . . , ÎK} for θ.

Now suppose that we wish to test H0 : θ = 0 against H1 : θ 6= 0 with type I error probability
α = 0.05 and power 1 − β = 0.8 when θ = ±0.2. We will use an O’Brien and Fleming test
with a maximum of K = 10 analyses. The information for θ required by a fixed-sample test
with these error probabilities is If,2 = 196.224 and the maximum information level for the
group sequential test can be shown to be

RB(10, 0.05, 0.2)× If,2 = 1.040× 196.224 = 204.1.

Taking p = 0.5 and assuming that nAk = nBk for k = 1, 2, . . . , 10, we see that I10 = 2n10.
Thus, solving I10 = 204.1 yields n10 = 102.1, which we round to 120 to obtain a multiple
of 20. This means that 10 groups of six observations per treatment should be planned. It

may also be shown that H0 is rejected at analysis k if |Zk| ≥ 2.087
√

10/k = 6.600/
√
k,

k = 1, 2, . . . , 10.

4 Adaptive treatment allocation rules

4.1 Definitions

So far, we have been concerned with how to construct sequential tests of some null hypothesis
H0 against an alternative H1 which have certain error probabilities. We now turn our
attention to the problem of how to assign patients to treatments in the context of a fixed-
sample clinical trial. The incorporation of stopping rules will be addressed later. Suppose
initially that there are t ≥ 2 treatments.

If complete randomisation is used, the next patient is equally likely to be assigned to
any of the t treatments, so that the treatment allocation probabilities are all 1/t. So this
randomisation rule does not take into account the previous treatment assignments and re-
sponses, or any other information. Consequently, complete randomisation is a non-adaptive
treatment allocation rule.

Since complete randomisation can lead to treatment group imbalances, a restricted ran-
domisation rule can be used to ensure that each treatment group has roughly the same
number of patients. For one of the simplest such rules, the treatment which most reduces
the imbalance is assigned with probability p, 0.5 < p < 1, and the other t− 1 treatments are
assigned with probability (1− p)/(t− 1).

As the trial progresses, some treatments may look more promising than others and it would
be desirable to allocate a higher proportion of patients to these treatments. In such cases,
a response-adaptive randomisation rule is used. The simplest such rules may be repre-
sented as urn models, in which balls of different types are added to or removed from the urn
according to the previous assignments and responses.
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4.2 Properties of adaptive treatment allocation

Let Njn denote the number of patients on treatment j after n assignments for j = 1, 2. First
suppose that complete randomisation is used. Then it is easy to see that N1n/n → 1/2
almost surely and

√
n
(
N1n

n
− 1

2

)
→ N

(
0,

1

4

)
in distribution as n → ∞. If restricted randomisation is used instead, then we still have
N1n/n→ 1/2, but, since the aim is now to balance the treatment groups, N1n/n will be less
variable. This means that any tests will have greater power.

As an example of a restricted randomisation rule, suppose that the responses on the two
treatments are independent with variance σ2. Then, after n assignments, the covariance
matrix of the estimated means is σ2diag(1/n1n, 1/n2n). Since the parameter of interest is
the difference between the means, the DA-optimal design minimises σ2(1/n1n +1/n2n). This
design assigns the next patient to treatment 1 if n2

2n > n2
1n and to treatment 2 if n2

1n > n2
2n.

From this deterministic design, we can construct a biased coin design which assigns the
nth patient to treatment 1 with probability

φn =
N2

2,n−1

N2
1,n−1 +N2

2,n−1

.

It can be shown that √
n
(
N1n

n
− 1

2

)
→ N

(
0,

1

20

)
in distribution as n→∞. This means that N1n/n is now asymptotically 80% less variable.

The above biased coin design is a special case of a generalised biased coin design which
assigns the nth patient to treatment 1 with probability

φn =
Nγ

2,n−1

Nγ
1,n−1 +Nγ

2,n−1

,

where γ ≥ 0. It can be shown that

√
n
(
N1n

n
− 1

2

)
→ N

{
0,

1

4(1 + 2γ)

}

in distribution as n→∞. When γ = 0, we have complete randomisation. The recommended
design is γ = 5, for which the asymptotic variance is 1/44.

Now suppose that response-adaptive randomisation is used. In order to assess how good an
allocation rule is, we need to study the behaviour of N1n/n for large n. Although response-
adaptive randomisation will assign a higher proportion of patients to the better treatment,
it induces correlation among treatment assignments, so that N1n/n may be more variable.
This means that any tests may have lower power. If the distribution of the responses on
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treatment j depends on the parameter θj for j = 1, 2 and ρ1(θ1, θ2) denotes the target
allocation for treatment 1, then we can use the variance of N1n/n to compare rules with
the same target allocation.

For a given target allocation, a Cramér-Rao lower bound on the asymptotic variance of the
allocation proportions can be obtained. Suppose that

Nn1

n
→ ρ1(θ1, θ2)

almost surely and
√
n
{
N1n

n
− ρ1(θ1, θ2)

}
→ N{0, V1(θ1, θ2)}

in distribution as n→∞. Then it can be shown that

V1(θ1, θ2) ≥ B(θ1, θ2) =
{∂ρ1(θ1,θ2)

∂θ1
}2

ρ1(θ1, θ2)I1(θ1)
+

{∂ρ2(θ1,θ2

∂θ2
}2

ρ2(θ1, θ2)I2(θ2)
,

where Ij(θj) denotes the Fisher information for a single observation on treatment j for
j = 1, 2. Any rule that attains this lower bound is called asymptotically best.

There are essentially two approaches to response-adaptive randomisation, one based on a
class of urn models and the other on a class of adaptive biased coin designs. As an example
of the latter, suppose that we wish to minimise a weighted average of the numbers of patients
on the two treatments subject to attaining a fixed power, where the weights are functions of
the θj for j = 1, 2. In the binary case, the weights would be the failure probabilities. Then
the optimal treatment allocation probabilities can be derived and the θj replaced by their
current maximum likelihood estimates. Thus, we obtain a sequential maximum likelihood
estimation rule.

4.3 Examples of adaptive treatment allocation

There are a wide variety of adaptive treatment allocation rules available. Four of the more
popular ones are described below.

Example. Efron’s biased coin design.
Let the treatment imbalance after n assignments be Dn = N1n−N2n and let 0.5 < p < 1
be a constant. Then the probability that the nth patient is assigned to treatment 1 is 1/2 if
Dn−1 = 0, p if Dn−1 < 0 and 1− p if Dn−1 > 0. It can be shown that

√
n
(
N1n

n
− 1

2

)
→ 0

in probability as n → ∞. This means that var(N1n/n) = o(1/n), which shows why this
design is so effective in terms of balancing the numbers of patients on the two treatments.
In fact, Efron’s biased coin design gives a uniformly more powerful Z or t test than complete
randomisation.
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Example. Adjustable biased coin design.
Let F (.) be a function F : Z → [0, 1], where Z is the set of integers, such that F is non-
increasing and F (−x) = 1 − F (x). Then the probability that the nth patient is assigned
to treatment 1 is F (Dn−1). Thus, with this design, the tendency towards balance becomes
stronger the more we move away from it. It can be shown that

√
n
(
N1n

n
− 1

2

)
→ 0

almost surely as n → ∞. When F (x) = p for x < 0, we have Efron’s biased coin design.
The adjustable biased coin design yields a uniformly more powerful Z or t test than Efron’s
biased coin design.

Example. Drop-the-loser rule.
Consider an urn model in which there are initially a balls for both treatment types and b
immigration balls. The immigration balls are present in order to ensure that the urn does
not empty. When a treatment ball is drawn, it is only replaced if the response is a success.
If an immigration ball is drawn, it is replaced along with one ball of each treatment type.
Assume that the probability of success for treatment j is pj for j = 1, 2. Then it can be
shown that

N1n

n
→ q2

q1 + q2

in probability and
√
n

(
N1n

n
− q2
q1 + q2

)
→ N

{
0,
q1q2(p1 + p2)

(q1 + q2)3

}
in distribution as n→∞, where qj = 1− pj. Thus, the target allocation for treatment 1 is
ρ1(p1, p2) = q2/(q1 + q2). Since Ij(pj) = 1/(pjqj) for j = 1, 2, it is easily verified that

B(p1, p2) =
q1q2(p1 + p2)

(q1 + q2)3
.

Consequently, the drop-the-loser rule is an asymptotically best procedure for the above target
allocation.

Example. Sequential maximum likelihood estimation rule.
Suppose that responses are binary and interest lies in minimising the number of treatment
failures for a fixed power. Then, if we use the usual large-sample Z test, this means that we
need to find the allocation ρ = ρ1(p1, p2) that minimises q1n1 + q2n2 subject to

p1q1
n1

+
p2q2
n2

= C,

where C is a constant. Letting n1 = ρn and n2 = (1− ρ)n, we see that

n =
p1q1
ρC

+
p2q2

(1− ρ)C
.
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Substituting for n in the formula for the number of treatment failures and differentiating
with respect to ρ, we obtain the equation

q1p2q2
(1− ρ)2

− p1q1q2
ρ2

= 0.

Solving yields

ρ =

√
p1√

p1 +
√
p2

.

Since this is a function of the unknown success probabilities, after n − 1 assignments, we
replace p1 and p2 by their maximum likelihood estimates based on the first n− 1 responses.
It can be shown that, for this sequential maximum likelihood estimation rule,

N1n

n
→

√
p1√

p1 +
√
p2

almost surely as n→∞ and

V1(p1, p2) =
p

3
2
1 (p2 + q2/2) + p

3
2
2 (p1 + q1/2)

(
√
p1 +

√
p2)3√p1p2

.

It is also easily verified that

B(p1, p2) =
1

4(
√
p1 +

√
p2)3

(
p2q1√
p1

+
p1q2√
p2

)
.

Consequently, this is not an asymptotically best procedure for the above target allocation.

4.4 Group-sequential response-adaptive tests

Up to now, we have considered adaptive treatment allocation in the context of a fixed trial
size. Since it is often more efficient to conduct a trial group sequentially, it is natural to
investigate the consequences of incorporating adaptive treatment allocation. The formula-
tion of such a group sequential test requires the determination of the joint distribution of
sequentially computed test statistics. Because of the dependencies induced by adaptive
treatment allocation, this is difficult in general.

LetXA1, XA2, . . . be independent normal random variables with mean µA and known variance
σ2

A and let XB1, XB2, . . . be independent normal random variables with mean µB and known
variance σ2

B. Then response-adaptive randomisation can be incorporated into a general
family of group sequential tests without affecting the error probabilities if the group sizes
do not depend on the estimated mean responses at the previous stage in any other way but
through their difference.

Let θ = µA − µB and suppose that we wish to test H0 : θ = 0. Then the standardised
statistic at analysis k for testing H0 is

Zk =
{
X

(k)
A −X

(k)
B

}√
Ik,

20



where

Ik =

(
σ2

A

nAk

+
σ2

B

nBk

)−1

is the information level. Let mAk and mBk denote the group sizes on treatments A and
B, respectively, at stage k. Then these are allowed to depend on the accumulated data

through the current estimate of θ given by θ̂(k−1) = X
(k−1)
A −X

(k−1)
B and chosen to achieve

the specified value of Ik. Under such an adaptive sampling scheme, the above statistics have
the canonical joint distribution with information levels {I1, . . . , IK} for θ.

To see how such a group-sequential response-adaptive test is constructed in practice,
suppose that we wish to minimise u(θ)nAτ + v(θ)nBτ , where u(θ) and v(θ) are specified
weights, and τ denotes the stage at which the test terminates. Then the allocation ratio
which minimises this weighted average is

nAτ

nBτ

=
σA

σB

w(θ),

where

w(θ) =

√√√√v(θ)

u(θ)
.

Since this is a function of the unknown θ, after k− 1 stages, we replace θ with its maximum
likelihood estimate θ̂(k−1). This means that we choose mAk and mBk so that

nAk

nBk

=
σA

σB

w(θ̂(k−1))

for k = 1, 2, . . . , K. If w(θ) = 1, then sampling is non-adaptive and only gives equal group
sizes if σA = σB.

At the first stage, we take
mA1 = σA{σA + σBw(θ̂(0))}I1

and
mB1 = σB{σA + σBw(θ̂(0))}I1/w(θ̂(0)),

where θ̂(0) is a preliminary estimate of θ and the group sizes are rounded to integers. If no
such estimate is available, we can use w(θ̂(0)) = 1. At stage 2 ≤ k ≤ K, assuming that the
test has not yet terminated, we take

mAk = σA{σA + σBw(θ̂(k−1))}Ik − nA,k−1

and
mAk = σB{σA + σBw(θ̂(k−1))}Ik/w(θ̂(k−1))− nB,k−1.

Again, these group sizes are rounded to integers. If either of their values is negative, that
group size is set to zero and sufficient observations are taken on the other treatment to achieve
the specified information level. The calculation of the information levels and boundaries for
a group-sequential response-adaptive test is the same as for its non-adaptive analogue.
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