DESIGN OF EXPERIMENTS FOR NON-LINEAR MODELS Part 2

Barbara Bogacka

Queen Mary, University of London

The criterion, introduced by Wald (1943), is

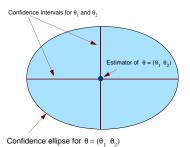
(

$$\Phi_D = \det(M^{-1}).$$

Properties:

- it minimises the general variance of the parameter estimator,
- it minimises the volume of the parameter confidence ellipsoid,
- it is invariant under linear transformations of the parameters,
- it is equivalent to G-optimality, what is given in so called Equivalence Theorem,
- ▶ it has at most p(p + 1)/2 + 1 points of support (Carathéodory's Theorem)

D - the most popular optimality criterion Geometrical Interpretation - volume of confidence ellipsoid



 $100(1-\alpha)\%$ confidence region of for parameter estimates is

$$(\theta - \widehat{\theta})^{\mathrm{T}} M(\theta - \widehat{\theta}) \leq p s^2 F_{p,\nu,\alpha},$$

where s^2 is an estimate of σ^2 , and $F_{p,\nu,\alpha}$ is $100\alpha\%$ point of the *F* distribution on *p* and ν degrees of freedom.

The volume of a *p*-dim. ellipsoid is proportional to $\left[\det M^{-1}\right]^{1/2}$.

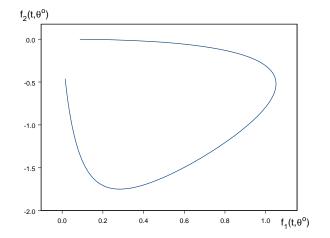
D - the most popular optimality criterion Geometrical Interpretation - design locus

Locally optimum designs for non-linear models with p parameters usually have p support points. Then the weights are all equal to 1/p.

Design locus is derived on the basis that the volume of a simplex in \mathbb{R}^p , formed by p points $x_i \in \mathbb{R}^p$ and the origin, is proportional to the determinant of the $(p \times p)$ -dimensional matrix formed by these points.

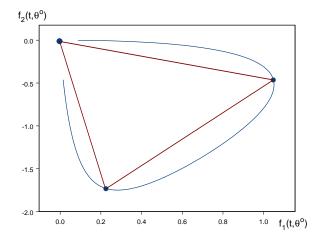
So, to maximise $\det M$, we find p points in the space of derivatives, which together with the origin, form a simplex of largest volume.

D - the most popular optimality criterion Geometrical Interpretation - design locus: PK model, p = 2



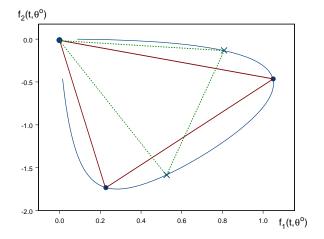
Design Locus

D - the most popular optimality criterion Geometrical Interpretation - design locus: PK model, p = 2



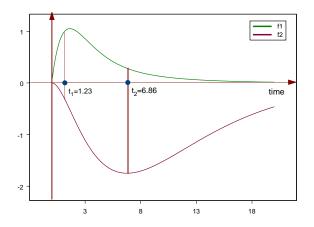
Design Locus, optimum points and the simplex

D - the most popular optimality criterion Geometrical Interpretation - design locus: PK model, p = 2



Design Locus, optimum and non-optimum solution

Geometrical Interpretation - parameter sensitivities



We find t_1 and t_2 such that det $X = f_1(t_1)f_2(t_2) - f_2(t_1)f_1(t_2)$ is maximum.

The Equivalence Theorem

Kiefer and Wolfowitz (1960)

A design ξ^* is D-optimum if and only if it is G-optimum, that is the following conditions are equivalent:

$$\det(M^{-1}(\xi^*)) = \min_{\xi} \det(M^{-1}(\xi))$$

$$\max_{x} d(x,\xi^*) = \min_{\xi} \max_{x} d(x,\xi),$$

where $d(x,\xi) = f^{T}(x)M^{-1}(\xi)f(x)$ is the variance of prediction at a point *x*. The third equivalent condition says

$$\max_{x} d(x,\xi^*) \le p,$$

where *p* is the number of parameters. Equality is achieved at the support points of ξ^* .

The Equivalence Theorem, an Illustration

Let the model response be

$$\eta(x,\vartheta) = \vartheta_0 + \vartheta_1 x + \vartheta_2 x^2$$
, on $[-1, 1]$.

Then, the D-optimum design is

$$\xi^{\star} = \left\{ \begin{array}{rrr} -1 & 0 & 1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right\}$$

The design does not depended on *N*, but instead on the weights.

The information matrix can then be written as

$$M(\xi^{\star}, \vartheta^{o}) = X^{\mathrm{T}}WX = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \times \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

D - the most popular optimality criterion The Equivalence Theorem, an Illustration

Hence,

$$M = \frac{1}{3} \left(\begin{array}{rrr} 3 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{array} \right)$$

and the variance function is

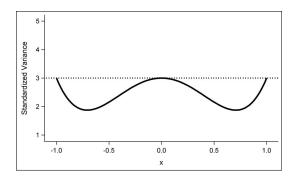
$$d(x,\xi^*) = f^{\mathrm{T}}(x)M^{-1}f(x)$$

= 3(1, x, x²) × $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0.5 & 0 \\ -1 & 0 & 1.5 \end{pmatrix}$ × $\begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix}$
= 3 - 4.5x² + 4.5x⁴.

Note, that $d(x, \xi^*) = 3$ at x = -1, 0, 1

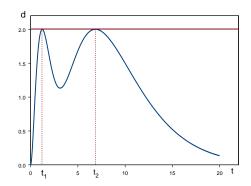
The Equivalence Theorem, an Illustration

$$\xi^{\star} = \left\{ \begin{array}{rrr} -1 & 0 & 1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right\}$$



D - the most popular optimality criterion The Equivalence Theorem - PK model

$$\xi^{\star} = \left\{ \begin{array}{cc} 1.23 & 6.86\\ \frac{1}{2} & \frac{1}{2} \end{array} \right\}$$



Example 4 Enzyme Kinetics Model, *p* = 2,

> In a typical enzyme kinetics reaction enzymes bind substrates and turn them into products. The binding step is reversible while the catalytic step irreversible:

$$S + E \longleftrightarrow ES \longrightarrow E + P$$
,

S, E and P denote substrate, enzyme and product, respectively.

Example 4 Enzyme Kinetics Model, *p* = 2,

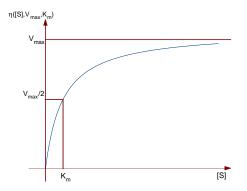
The reaction rate is represented by the Michaelis-Menten model

$$v = \frac{V_{max}[S]}{K_m + [S]},$$

where [S] is the concentration of the substrate and V_{max} and K_m are the model parameters:

- V_{max} denotes the maximum velocity of the enzyme and
- ► K_m is Michaelis-Menten constant, it is the value of [S] at which half of the maximum velocity V_{max} is reached.

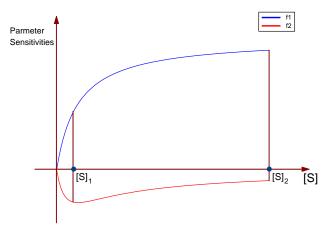
Example 4 Enzyme Kinetics Model, *p* = 2,



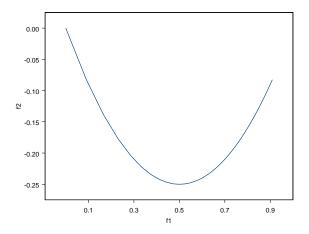
Michaelis-Menten Model. The response function: $\eta([S]; V_{max}, K_m)$ for the point priors $V_{max}^o = 1, K_m^o = 1$.

D optimality

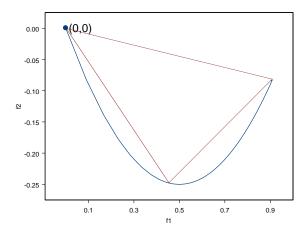
Enzyme Kinetics Model, p = 2, Parameter Sensitivities



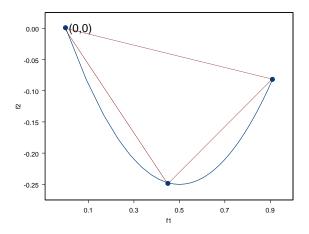
 f_1 does not have a proper maximum; the largest value is at the border of the design region.



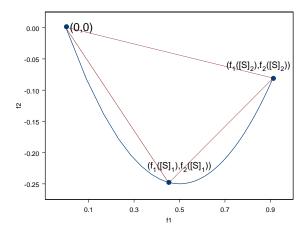
Design Locus does not form a loop.



Design Locus: one vertex must be at the end of the locus.

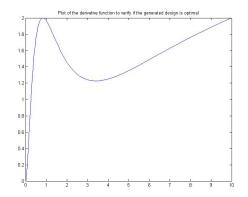


Design Locus: the triangle of maximum area.



Design Locus: Optimum design points.

D optimality Enzyme Kinetics Model, p = 2, The Equivalence Theorem



The variance function has only one proper maximum; it also reaches p = 2 at the border of the design region.

D optimality Enzyme Kinetics Model, *p* = 2, COURSE-WORK 1

Obtain a locally D-optimum design points for the Michaelis-Menten model for the point prior values of the parameters equal to $V_{max}^o = 1, K_m^o = 1$.

Example 5. Two Consecutive Chemical Reactions Model.

Atkinson and Bogacka (2002), Chemometrics

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C.$$

The kinetic differential equations for [A], [B] and [C], the concentrations of the chemical compounds A, B and C as functions of time *t* are

$$\frac{d[A]}{dt} = -k_1[A]^{\lambda_1}
\frac{d[B]}{dt} = k_1[A]^{\lambda_1} - k_2[B]^{\lambda_2}
\frac{d[C]}{dt} = k_2[B]^{\lambda_2}.$$
(1)

Interest is in estimation of the orders λ_1, λ_2 as well as of the rates k_1, k_2 .

Example 5. Two Consecutive Chemical Reactions Model

The first of the three equations can be solved analytically to give the concentration of chemical A at time t as

$$[A] = \{1 - (1 - \lambda_1)k_1t\}^{1/(1 - \lambda_1)} \qquad (\lambda_1, k_1, t \ge 0; \lambda_1 \ne 1),$$

if it is assumed that the initial concentration of *A* is 1.

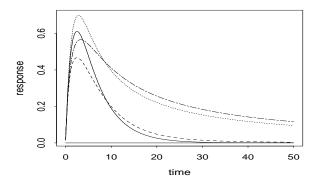
This gives the following differential equation for the concentration of the compound *B*

$$\frac{d[B]}{dt} = k_1 \{1 - (1 - \lambda_1)k_1t\}^{\frac{\lambda_1}{1 - \lambda_1}} - k_2[B]^{\lambda_2}$$

which has to be solved numerically.

Example 5. Two Consecutive Chemical Reactions Model

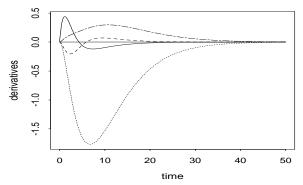
General Consecutive Reaction



Concentration of B. Reading upward at t = 20: $(\lambda_1^o, \lambda_2^o) = (1, 1), (2, 1), (1, 2)$ and $(2, 2), (k_1^o, k_2^o) = (0.7, 0.2).$

Example 5. Two Consecutive Chemical Reactions

Model derivatives with respect to the parameters



General Consecutive Reaction

Derivatives (parameter sensitivities) as a function of time. Reading upward at t = 10: f_2, f_1, f_3, f_4 for k_2, k_1, λ_1 and λ_2 , respectively. Here $(\lambda_1^o, \lambda_2^o) = (1, 1), (k_1^o, k_2^o) = (0.7, 0.2).$

Example 5. Two Consecutive Chemical Reactions D-optimum designs

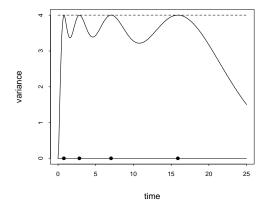
These designs were found by searching over the four continuous values of time, but with the weights held known at 0.25. The design region is T = [0,50].

Prior orders of reaction	time			
$\left(k_{1}^{o},k_{2}^{o},\lambda_{1}^{o},\lambda_{2}^{o} ight)$	t_1^*	t_2^*	t_3^*	t_4^*
(0.7, 0.2, 1, 1)	0.80	2.85	7.05	15.90
(0.7, 0.2, 2, 1)	0.51	2.36	7.30	18.26
(0.7, 0.2, 1,2)	0.83	2.91	8.05	40.39
(0.7, 0.2, 2, 2)	0.57	2.65	9.68	50.00

Table 1. D-optimum designs for both rate and order. The weights are 0.25 at each design point.

Example 5. Two Consecutive Chemical Reactions D-optimum designs

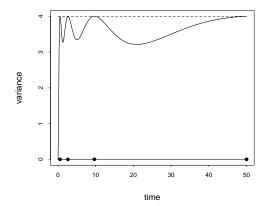
 $A \rightarrow B \rightarrow C$: lambda = (1,1)



The variance of prediction $d(t, \xi^*, \vartheta)$ for prior $(k_1^o, k_2^o, \lambda_1^o, \lambda_2^o) = (0.7, 0.2, 1, 1).$

Example 5. Two Consecutive Chemical Reactions D-optimum designs

A -> B -> C: lambda = (2,2)



Responses for various priors and the variance of prediction $d(t, \xi^*, \vartheta)$ for prior $(k_1^o, k_2^o, \lambda_1^o, \lambda_2^o) = (0.7, 0.2, 2, 2)$.